已知正方体ABCD-A1B1C1D1,则【 】
A、直线BC1与DA1所成的角为90°
B、直线BC1与CA1所成的角为45°
C、直线BC1与平面BB1 DD1所成的角为45°
D、直线BC1与平面ABCD所成的角为45°
已知正方体ABCD-A1B1C1D1,则【 】
A、直线BC1与DA1所成的角为90°
B、直线BC1与CA1所成的角为45°
C、直线BC1与平面BB1 DD1所成的角为45°
D、直线BC1与平面ABCD所成的角为45°
ABD如图,连接 B1C、BC1,因为DA1//B1C,所以直线 与 所成的角即为直线 与DA1所成的角,因为四边形BB1C1C为正方形,则B1C⊥BC1 ,故直线 与DA1所成的角为90°,A正确;连接A1C,因为A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,则A1B1⊥BC1,因为B1C⊥BC1 ,A1B1∩B1C=B1,所以BC1⊥平面 ,又A1C⊂平面 ,所以BC1⊥CA1,故B正确;连接A1C1,设A1C1∩B1D1=O,连接BO,因为BB...
查看完整答案在xOy平面上,四边形ABCD的四个顶点坐标依次为(0,0),(1,0),(2,1)及(0,3).求这个四边形绕x轴旋转一周所得到的几何体的体积.
如果直线l,m与平面α,β,γ满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么必有【 】
如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.
已知 ABCD 是边长为 1 的正方形, 绕其中一条轴 AB 旋转成一个圆柱.(1) 求该圆柱的表面积;(2) 将 DC 旋转 90° 至 C1D1, 求线 C1D 与平面 ABCD 的夹角.
在120°的二面角P-α-Q的两个面P和Q内,分别有点A和B . 已知点A和点B到棱α的距离分别为2和4,且线段AB=10.(1) 求直线AB和棱α所成的角;(2) 求直线AB和平面Q所成的角.
已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图).求证MNPQ是一个矩形.
已知三个平面两两相交,有三条交线.求证这三条交线交于一点或互相平行.
如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点.求证:平面PAC垂直于平面PBC.
如图,正四棱台中,A'D'所在的直线与BB'所在的直线是【 】
如图,已知圆柱的底面半径是3,高是4,A,B两点分别在两底面的圆周上,并且AB=5,那么直线AB与轴oo'之间的距离等于______.
如图,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是【 】
已知:两条异面直线a,b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a,b上分别取点E,F,设A1E=m,AF=n. 求证:EF=.
已知异面直线a与b所成的角为50°,P为空间一定点,则过点P且与a、b所成的角都是30°的直线有且仅有【 】
如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是________.
如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.
如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.
由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.
如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】
如图已知正方体ABCD-A1 B1 C1 D1,M,N分别是A1 D,D1 B的中点,则【 】