关注优题吧,注册平台账号.
在xOy平面上,四边形ABCD的四个顶点坐标依次为(0,0),(1,0),(2,1)及(0,3).求这个四边形绕x轴旋转一周所得到的几何体的体积.
根据题意,该几何体可看做是一个上底面圆半径为1,下底面圆半径为3,高为2的圆台挖去一个底面圆半么为1,高为1的圆锥,故其体积为
V=1/3 π×2×(1+1×3+9)-1/3 π×12×1=25π/3.
Find the equation of the sphere which passes through (1,5,-3),(-3,0,0) which center on the 3x+y+z=0,x+2y +1 = 0.
已知 ABCD 是边长为 1 的正方形, 绕其中一条轴 AB 旋转成一个圆柱.(1) 求该圆柱的表面积;(2) 将 DC 旋转 90° 至 C1D1, 求线 C1D 与平面 ABCD 的夹角.
当实数t取什么值时,复数z=+i的辐角主值θ适合0≤θ≤π/4 ?
arccos(-x)大于arccosx的充要条件是【 】
全国统考数列与推理
画出极坐标方程(ρ-2)(θ-π/4)=0(ρ>0)的曲线.
设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.
设O为复平面的原点,Z1和Z2为复平面内的两个动点,且满足:(Ⅰ) Z1和Z1所对应的复数的辐角分别为定值θ和-θ (0<θ<π/2);(Ⅱ) △OZ1 Z2的面积为定值S.求△OZ1 Z2的重心Z所对应的复数的模的最小值.
在下列各数中,已表示成三角形式的复数是【 】
已知z=1+i.(Ⅰ)设ω=z2+3z ̅-4,求ω的三角形式;(Ⅱ)如果=1-i,求实数a,b的值.
如图所示,为了制作一个圆柱形灯笼,先要制作4 个全等的矩形骨架,总计耗用9.6 米铁丝。 骨架将到柱底面8 等分,再用S 平方米塑輯片制成圆柱的侧面和下底面(不安装上底面).(Ⅰ) 当圆柱底面半径r 为何值时, S 取得最大值? 并求出该最大值(结果精确到0.01 平方米);(Ⅱ) 在灯笼内,以矩形骨架的頂点为端点, 安装一些霓虹灯,当灯笼底面半径为0.3 米时,求图中两根直线型霓虹灯A1B3,A3B5所在异面直线所成角的大小(结果用反三角函数值表示).
Find the equation of the ruled surface whose generators are the system of the lines x-2y =4kx,k(x-2y)=4 and discuss the surface.
如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为【 】
解不等式 loga(1-1/x)>1.
不等式组的解集是【 】
已知直线的极坐标方程为ρsin(θ+π/4)=/2,则极点到该直线的距离是______.
设复数z=3cosθ+i∙sinθ.求函数y=θ-argz(0<θ<π/2)的最大值以及对应的θ值.
已知复数z1=i(1-i)3.(Ⅰ)求argz1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.
已知i,m,n是正整数,且1<i≤m<n.(Ⅰ)证明 niAim<miAin;(Ⅱ)证明 (1+m)n>(1+n)m.
求(1-2i)5的实部.
如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.
如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.
如图,在正三角棱柱ABC-A1 B1 C1中,E∈BB1,截面A1 EC⊥侧面AC1 (Ⅰ)求证: BE=EB1;(Ⅱ)若AA1=A1 B1,求平面A1 EC与平面A1 B1 C1所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(Ⅰ)证明:(如图)在截面A1 EC内,过E作EG⊥A1 C,G是垂足. ①∵_________________________________________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC.②∵_________________________________________.∴BF⊥侧面AC1;得BF//EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________________________________________∴BF//EG四边形BEGF是平行四边形BF=EG.④∵_________________________________________∴FG//AA1,ΔAA1 C∽ΔFGC.⑤∵_________________________________________∴FG=1/2 AA1=1/2 BB1,即BE=1/2 BB1故BE=EB1.(Ⅱ)解:
如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a. (Ⅰ)求截面EAC的面积;(Ⅱ)求异面直线A1 B1与AC之间的距离;(Ⅲ)求三棱锥B1-EAC的体积.
一间民房的屋顶有如图三种不同的盖法:①单向倾斜; ②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1,P2,P3. 若屋顶斜面与水平面所成的角都是α,则【 】
2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠穆高峰测量法之一,下图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同水平面上的投影A',B',C'满足∠A' C' B'=45°,∠A' B'C'=60°,由C点测得B点的仰角为15°,BB'与CC'的差为100,由B点测得A点的仰角为45°,则A,C两点到水平面A'B'C'的高度差AA'-CC'约为(≈1.732)【 】
已知正方体ABCD-A1 B1 C1 D1,点E为A1 D1的中点,直线B1 C1交平面CDE于点F. (1)求证:点F为B1 C1的中点;(2)若点M为棱A1 B1上一点,且二面角M-CF-E的余弦值为/3,求A1 M/A1B1 .
如图,在棱长为2的正方体ABCD-A1 B1 C1 D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1 F//平面A1 EC1;(2)求直线AC1与平面A1 EC1所成角的正弦值;(3)求二面角A-A1 C1-E的正弦值.
如图,直三棱柱ABC-A1 B1 C1的体积为4,△A1 BC的面积为2√2.(1)求A到平面A1 BC的距离;(2)设D为A1 C的中点,AA1=AB,平面A1 BC⊥平面ABB1 A1,求二面角A-BD-C的正弦值.
如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点. (1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.