设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.
在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O为原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数.
已知z1,z2是两个给定的复数,且z1≠z2,它们在复平面上分别对应于点Z1和点Z2.如果z满足方程|z-z1|-|z-z2|=0,那么z对应的点Z的集合是【 】
在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】
复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.
试问数列:lg100,lg(100sinπ/4),lg(100sin2π/4),⋯,lg(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)
在 A , B , C , D 四位候选人中:1.如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果.2.如果选举班委三人,共有几种选法?写出所有可能的选举结果.