单项选择(2022年北京市

若复数z满足i⋅z=3-4i,则|z|=【 】

A、1

B、5

C、7

D、25

答案解析

B

【解析】

等式i⋅z=3-4i两端同乘以i,得-z=3i+4,即z=-4-3i,

所以|z|==5.

讨论

用数学归纳法证明等式对一切自然数n都成立.

设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.

设O为复平面的原点,Z1和Z2为复平面内的两个动点,且满足:(Ⅰ) Z1和Z1所对应的复数的辐角分别为定值θ和-θ (0<θ<π/2);(Ⅱ) △OZ1 Z2的面积为定值S.求△OZ1 Z2的重心Z所对应的复数的模的最小值.

在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】

设a≥0,在复数集C中解方程z2+2|z|=a.

设{zn } (n≥1)是复数数列,奇数项为实数,偶数项为纯虚数,且∀k∈N+,|zkzk+1| = 2k,记fn=|z1 + z2 + ⋯ + zn |.(1) 求f2020的最小可能值;(2) 求f2020∙f2021的最小可能值.

复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.

已知z1,z2是两个给定的复数,且z1≠z2,它们在复平面上分别对应于点Z1和点Z2.如果z满足方程|z-z1|-|z-z2|=0,那么z对应的点Z的集合是【 】

在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O为原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数.

设复数z=3cosθ+i∙sinθ.求函数y=θ-argz(0<θ<π/2)的最大值以及对应的θ值.