设复数 z1, z2 满足 |z1| = |z2| = 2, z1 + z2 = + i , 则 |z1 − z2| =______.
4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种
己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.
已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】
已知z=1-2i,且z+az ̄+b=0,其中a,b为实数,则【 】
今有三数,其和为 37,积为 1440,且其中二数的积较第三数的三倍大 12.试求此三数.
使得n²+2023n为平方数的正整数n的最小值是__________.
已知a,b为正整数,a<b,且a,b互质.若关于x,y的不等式ax+by≤ab有且仅有2023组正整数解,则(a,b)=____________________(求出满足题意的所有可能数组).
求所有不超过100的正整数k,使得存在整数n,满足:k|(3n6+26n4+33n2+1)
设有理数r=p/q∈(0,1),其中p,q为互素的正整数,且pq整除3600.这样的有理数r的个数为________.
已知复数列{zn}满足:z1=√3/2,zn+1=zn ̅(1+zni)(n=1,2,⋯)其中i为虚单位.求z2021的值.