设有理数r=p/q∈(0,1),其中p,q为互素的正整数,且pq整除3600.这样的有理数r的个数为________.
设有理数r=p/q∈(0,1),其中p,q为互素的正整数,且pq整除3600.这样的有理数r的个数为________.
112
【解析】
解答过程见word版
在△ABC中,AB=1,AC=2,B-C=2π/3,则△ABC的面积为__________.
设函数f(x)=cosx+log2x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.
设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.
若集合A={1,2,m},其中m为实数.令B={a²|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为________.
等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.
有一个二位数,其数字之和为 14,若将其二数字之位置交换,则所得之数较之原数大 18,求原数.
今有三数,其和为 37,积为 1440,且其中二数的积较第三数的三倍大 12.试求此三数.
使得n²+2023n为平方数的正整数n的最小值是__________.
已知a,b为正整数,a<b,且a,b互质.若关于x,y的不等式ax+by≤ab有且仅有2023组正整数解,则(a,b)=____________________(求出满足题意的所有可能数组).
设x1,x2,⋯,x2023为两两不等的正实数,对任意一个n=1,2,⋯,2023,an=都是一个整数.证明:a2023≥3034.
一个分数的分子与分母之和为 38,其分子和分母都减去15,约分后得到1/3,则这个分数的分母与分子之差为【 】
若整数m=paqbrc,其p,q,r为质数(primes), 试求m所有约数之个数.
在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O为原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数.
已知复数z=/2 - 1/2 i,ω=/2+/2 i.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是在等腰直角三角形(其中O为原点).
设复数z=3cosθ+i∙sinθ.求函数y=θ-argz(0<θ<π/2)的最大值以及对应的θ值.
在复平面内,把复数3-i对应的向量按顺序时针方向旋转π/3,所得向量对应的复数是【 】
已知复数z1=i(1-i)3.(Ⅰ)求argz1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.