在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O为原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数.
复数z = -3[sin(4π/3) - icos(4π/3)]的辐角的主值是【 】
复数z=-3(cos π/5 - isin π/5)( i是虚数单位)的三角形式是【 】
已知复数z的辐角为60°,且|z-1|是|z|和|z-2|的等比中项求|z|.
设z是不为0的复数,若(z ̅ )2+1/z2 的实部和虚部均为整数,则|z|的值可能是【 】
下面两个算式哪一个对?√(-4)∙√(-9)=2i∙3i=6i²=-6√(-4)∙√(-9)==√36=6
在复平面内,复数z对应的点的坐标是(-1,√3),则z的共轭复数z ̅=【 】
在复平面内, 复数 z 对应的点的坐标是 (1, 2), 则 i · z =【 】
设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.
在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】
复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.
已知z1,z2是两个给定的复数,且z1≠z2,它们在复平面上分别对应于点Z1和点Z2.如果z满足方程|z-z1|-|z-z2|=0,那么z对应的点Z的集合是【 】