关注优题吧,注册平台账号.
在复平面内, 复数 z 对应的点的坐标是 (1, 2), 则 i · z =【 】
A、1 + 2i
B、−2 + i
C、1 − 2i
D、−2 − i
B
已知集合 A = {−1, 0, 1, 2}, B = {x | 0 < x < 3}, 则 A ∩ B =【 】
已知椭圆 C : x2/a2 +y2/b2 = 1 (a > b > 0) 的离心率为/2 , 且过点 A(2, 1).(1) 求 C 的方程;(2) 点 M, N 在 C 上, 且 AM ⊥ AN, AD ⊥ MN, D 为垂足. 证明: 存在定点 Q, 使得 |DQ| 为定值.
已知函数 f(x) = aex−1 − ln x + ln a.(1) 当 a = e 时, 求曲线 y = f(x) 在点 (1, f(1)) 处的切线与两坐标轴围成的三角形的面积;(2) 若 f(x) ⩾ 1, 求 a 的取值范围.
如图, 四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.(1) 证明: l ⊥ 平面 P DC;(2) 已知 PD = AD = 1, Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.
为加强环境保护, 治理空气污染, 环境监测部门对某市空气质量进行调研, 随机抽查了 100 天空气中的 PM2.5和SO2 浓度 (单位: ug/m3), 得下表:(1) 估计事件“该市一天空气中 PM2.5 浓度不超过 75, 且SO2 浓度不超过 150”的概率;(2) 根据所给数据, 完成下面的 2 × 2 列联表:(3) 根据 (2) 中的列联表, 判断是否有 99% 的把握认为该市一天空气中 PM2.5 浓度与SO2 浓度有关?附:
已知公比大于 1 的等比数列 {an} 满足 a2 + a4 = 20, a3 = 8.(1) 求 {an} 的通项公式;(2) 记 bm 为 {an} 在区间 (0, m] (m ∈ N∗) 中的项的个数, 求数列 {bm} 的前 100 项和 S100.
在 ① ac =, ② csin A = 3, ③ c = b 这三个条件中任选一个, 补充在下面问题中, 若问题中的三角形存在, 求 c 的值; 若问题中的三角形不存在, 说明理由.问题: 是否存在 △ABC, 它的内角 A, B, C 的对边分别为 a, b, c, 且 sinA = sinB, C = π/6 ,__________?注: 如果选择多个条件分别解答, 按第一个解答计分.
已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为__________.
某中学开展劳动实习, 学生加工制作零件, 零件的截面如图所示. O 为圆孔及轮廓圆弧 AB 所在圆的圆心, A 是圆弧 AB 与直线 AG 的切点, B 是圆弧 AB 与直线 BC 的切点, 四边形 DEFG 为矩形, BC⊥DG, 垂足为 C, tan∠ODC = 3/5, BH//DG, EF = 12cm, DE = 2cm, A 到直线 DE 和 EF 的距离均为 7 cm, 圆孔半径为 1 cm, 则图中阴影部分的面积为 __________c㎡.
将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.
已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则【 】
已知复数z的辐角为60°,且|z-1|是|z|和|z-2|的等比中项求|z|.
设z是不为0的复数,若(z ̅ )2+1/z2 的实部和虚部均为整数,则|z|的值可能是【 】
已知复数z的模为2,则|z-i|的最大值为【 】
复数z=-3(cos π/5 - isin π/5)( i是虚数单位)的三角形式是【 】
下面两个算式哪一个对?√(-4)∙√(-9)=2i∙3i=6i²=-6√(-4)∙√(-9)==√36=6
在复平面内,复数z对应的点的坐标是(-1,√3),则z的共轭复数z ̅=【 】
若z/(z-1)=i+1,则z=【 】
已知复数z=+i,则arg 1/z是【 】
求下列等式里x和y之值:(3xi+2x)+(yi-4)=(2y+5i)-(3+xi).
Consider an odd prime p and a positive integer N<50p. Let a1,a2,⋯,aN be a list of positive integers less than p such that any specific value occurs at most 51/100 N times and a1,a2,⋯,aN is not divisible by p. Prove that there exists a permutation b1,b2,⋯,bN of the a_i such that, for all k=1,2,⋯,N, the sum b1+b2+⋯+bk is not divisible by p.【译】已知奇素数p和正整数N<50p.设a1,a2,⋯,aN是一些小于p的正整数,同一数值至多出现51/100 N次,且a1+a2+⋯+aN不能被p整除.证明:存在a_i的一个排列:b1,b2,⋯,bN,使得对任意的k=1,2,⋯,N,都有b1+b2+⋯+bk不能被p整除.
Fix integers a and b greater than 1. For any positive integer n, let rn be the (non-negative) remainder that bn leaves upon division by an. Assume there exists a positive integer N such that rn<2n/n for all integers n≥N.Prove that a divides b.给定大于1的整数a和b.对任意的正整数n,记rn为bn除以an的非负余数.若存在正整数N,使得对任意的n≥N,都有rn<2n/n.证明:a整除b.
若 z = 1 +i,则|z2 −2z| =【】
若 z = 1 + 2i+i3, 则|z| =【 】
设复数 z1, z2 满足 |z1| = |z2| = 2, z1 + z2 = + i , 则 |z1 − z2| =______.
新高考Ⅱ复数的运算
若(1 + i) = 1 − i, 则 z =【 】
复数1/(1-3i) 的虚部是【 】
(2-i)/(1+2i) =【 】
若复数z=+ i,则arg 1/z等于______.