填空题(2020年江苏省

已知 i 是虚数单位, 则复数 z = (1 + i)(2 − i) 的实部是______.

答案解析

3

讨论

已知集合 A = {−1, 0, 1, 2}, B = {0, 2, 3}, 则 A ∩ B =__________.

已知 1 < a ⩽ 2, 函数 f(x) = ex − x − a, 其中 e = 2.71828 … 为自然对数的底数.(I) 证明: 函数 y = f(x) 在 (0, +∞) 上有唯一零点;(II) 记 x0 为函数 y = f(x) 在 (0, +∞) 上的零点, 证明:(i) ≤x0≤;(ii) x0 f()≥(e-1)(a-1)a .

如图, 已知椭圆 C1: x2/2+y2=1, 抛物线 C2: y2=2px (p > 0), 点 A 是椭圆 C1 与抛物线 C2 的交点, 过点 A的直线 l 交椭圆 C1 于点 B, 交抛物线 C2 于 M (B, M 不同于 A).(I) 若 p=1/16 , 求抛物线 C2 的焦点坐标;(II) 若存在不过原点的直线 l 使 M 为线段 AB 的中点, 求 p 的最大值.

已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.

如图, 三棱台 ABC − DEF 中, 平面 ACFD ⊥ 平面 ABC, ∠ACB = ∠ACD = 45°, DC = 2BC.(I) 证明: EF ⊥ DB;(II) 求 DF 与面 DBC 所成角的正弦值.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.

已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.

盒中有 4 个球, 其中 1 个红球, 1 个绿球, 2 个黄球, 从盒中随机取球, 每次取 1 个, 不放回, 直到取出红球为止, 设此过程中取到黄球的个数为 ξ, 则 P (ξ = 0) = ______, E(ξ) = ______.

已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.

已知圆锥的侧面积 (单位: cm2) 为 2π, 且它的侧面展开图是一个半圆, 则这个圆锥的底面半径 (单位: cm) 为_______.