已知 i 是虚数单位, 则复数 z = (1 + i)(2 − i) 的实部是______.
已知集合 A = {−1, 0, 1, 2}, B = {0, 2, 3}, 则 A ∩ B =__________.
在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.
已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.
已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.
已知圆锥的侧面积 (单位: cm2) 为 2π, 且它的侧面展开图是一个半圆, 则这个圆锥的底面半径 (单位: cm) 为_______.
求1的三次根(实根和虚根),证:任一虚根的平方等于另一虚根,且((-1+i√3)/2)n+((-1-i√3)/2)n=-1,式中n为整数,唯不能为3的倍数.
(sinθ +icosθ)n = sinnθ +icosnθ.
使得n²+2023n为平方数的正整数n的最小值是__________.
已知a,b为正整数,a<b,且a,b互质.若关于x,y的不等式ax+by≤ab有且仅有2023组正整数解,则(a,b)=____________________(求出满足题意的所有可能数组).
求所有不超过100的正整数k,使得存在整数n,满足:k|(3n6+26n4+33n2+1)
设有理数r=p/q∈(0,1),其中p,q为互素的正整数,且pq整除3600.这样的有理数r的个数为________.
已知复数列{zn}满足:z1=√3/2,zn+1=zn ̅(1+zni)(n=1,2,⋯)其中i为虚单位.求z2021的值.