填空题(2010年上海市

若复数z=1-2i(i为虚数单位),则z·z ̅+z=_____.

答案解析

6-2i

讨论

在复平面内,复数z对应的点的坐标是(-1,√3),则z的共轭复数z ̅=【 】

已知a,b为正整数,a<b,且a,b互质.若关于x,y的不等式ax+by≤ab有且仅有2023组正整数解,则(a,b)=____________________(求出满足题意的所有可能数组).

Consider an odd prime p and a positive integer N<50p. Let a1,a2,⋯,aN be a list of positive integers less than p such that any specific value occurs at most 51/100 N times and a1,a2,⋯,aN is not divisible by p. Prove that there exists a permutation b1,b2,⋯,bN of the a_i such that, for all k=1,2,⋯,N, the sum b1+b2+⋯+bk is not divisible by p.【译】已知奇素数p和正整数N<50p.设a1,a2,⋯,aN是一些小于p的正整数,同一数值至多出现51/100 N次,且a1+a2+⋯+aN不能被p整除.证明:存在a_i的一个排列:b1,b2,⋯,bN,使得对任意的k=1,2,⋯,N,都有b1+b2+⋯+bk不能被p整除.

Fix integers a and b greater than 1. For any positive integer n, let rn be the (non-negative) remainder that bn leaves upon division by an. Assume there exists a positive integer N such that rn<2n/n for all integers n≥N.Prove that a divides b.给定大于1的整数a和b.对任意的正整数n,记rn为bn除以an的非负余数.若存在正整数N,使得对任意的n≥N,都有rn<2n/n.证明:a整除b.

设iz=4+3i,则z=【 】

在复平面内,复数z满足(1-i)·z=2,则z=【 】

设i是虚数单位,复数(9+2i)/(2+i)=__________.

已知a∈R,(1+ai)i=3+i,(i为虚单位),则a=【 】

若i(i-z)=1,则z ̅+z=【 】

(2+2i)(1-2i)=【 】