设iz=4+3i,则z=【 】
A、-3-4i
B、-3+4i
C、3-4i
D、3+4i
求所有的n∈N*,使得存在n阶实矩阵A,B,满足对任意的n维非零实向量v,Av,Bv线性无关.
给定素数p和正整数 n(n≥2).A为n个p阶循环群的直和.问:至少需要几个A的真子群,才能使他们的并集能覆盖A?
复矩阵A与A的任意正整数次常相似.(1)证明:A的特征值为0或 1;(2)求A的若当标准型.
令A,B,C,D,E,F是三阶实方阵,且=.已知A=,B=且C=A+B-I,则[|detF|]=______.
设20阶实矩阵A满足eA=I20,且A在复数域上的所有特征值模长均不超过20,则这样的互不相似的A有______个.
分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图: 则下列结论中错误的是【】
如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1) 证明:平面PAM⊥平面 PBD;(2) 若PD=DC=1,求四棱锥P-ABCD 的体积.
设复数z=cosθ+isinθ(0<θ<π),ω=,已知|ω|=/3,argω<π/2,求θ.
如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是【 】
已知z=1+i.(Ⅰ)设ω=z2+3z ̅-4,求ω的三角形式;(Ⅱ)如果=1-i,求实数a,b的值.
已知复数z=/2 - 1/2 i,ω=/2+/2 i.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是在等腰直角三角形(其中O为原点).
设复数z=3cosθ+i∙sinθ.求函数y=θ-argz(0<θ<π/2)的最大值以及对应的θ值.