已知z=2-i,则z(z ̅+i)=【 】
A、6-2i
B、4-2i
C、6+2i
D、4+2i
设集合A={x|-2<x<4},B={2,34,5},则A∩B=【 】
已知椭圆x2/2+y2=1的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在右准线l上,且BC//x轴.求证直线AC经过线段EF的中点.
已知等差数列前三项为a,4,3a前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值,(Ⅱ)求 (1/S1 +1/S2 +⋯+1/Sn ).
求函数y=(sinx+cosx)2+2cos2x的最小正周期.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上。若PF1⊥PF2,则点P到x轴的距离为______.
已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有__________种可能(用数字作答).
设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.
在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】
把复数1+i对应的向量按顺时针方向旋转2π/3,所得到的向量对应的复数是【 】
复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.
已知复数z=1+i,求复数(z2 - 3z + 6)/(z + 1)的模和辐角的主值.
已知z1,z2是两个给定的复数,且z1≠z2,它们在复平面上分别对应于点Z1和点Z2.如果z满足方程|z-z1|-|z-z2|=0,那么z对应的点Z的集合是【 】