问答题(2001年广东省2001年河南省

设f(x)是定义R上的偶函数,其图像关于直线x=1对称,对任意x1,x2∈[0,1/2],都有f(x1+x2 )=f(x1)f(x2),且f(1)=a>0.

(Ⅰ)求f(1/2)及f(1/4);

(Ⅱ)证明f(x)是周期函数;

(Ⅲ)记an=f(2n+1/2n),求(lnan).

答案解析

(Ⅰ)因为对x1,x2∈[0,1/2],都有f(x1+x2 )=f(x1 )∙f(x2 ),所以f(x)=f(x/2+x/2)=f(x/2)∙f(x/2)≥0,∈[0,1].∵f(1)=f(1/2+1/2)=f(1/2)∙f(1/2)=[f(1/2)]2,f(1/2)=f(1/4+1/4)=f(1/4)∙f(1/4)=[f(1/4)]2.f(1)=a>0,∴f(1/2)=a1/2,f(1/4)=a1/4.(Ⅱ)依题设y=f(x)关于直线x=1对称,故f(x)=f(1+1-x),即f(x)=f(2-x),x∈R.又由f(x)是偶函数,知f(-x)=f(x),x∈R,∴...

查看完整答案

讨论

如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是【 】

如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么【 】

定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间├ [0,+∞)上的图像与f(x)的图像重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)>g(b)-g(-a).其中成立的是【 】

设f(x),g(x)都是单调函数,有如下四个命题:①若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减;其中,正确的命题是【 】

以下哪个函数既是奇函数,又是减函数【 】

已知函数 和g(x)=ax-ln⁡x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.

若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k)=【 】

设函数f(x)=cosx+log2⁡x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.

函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?

已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.