如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是【 】
A、增函数且最小值为-5
B、增函数且最大值为-5
C、减函数且最小值为-5
D、减函数且最大值为-5
如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是【 】
A、增函数且最小值为-5
B、增函数且最大值为-5
C、减函数且最小值为-5
D、减函数且最大值为-5
B
设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】
若定义在 R 的奇函数 f(x) 在 (−∞, 0) 单调递减, 且 f(2) = 0, 则满足 xf(x − 1) ⩾ 0 的 x 的取值范围是【 】
已知 y = f(x) 是奇函数, 当 x ⩾ 0 时, f(x) = x2/3 , 则 f(−8) 的值是______.
下面给出的函数中,哪一个函数既是区间(0,π/2)上的增函数,又是以π为周期的偶函数【 】
已知函数f(x)及其导函数 的定义域均为R,记g(x)=f' (x),若f(3/2-2x),g(2+x)均为偶函数,则【 】
若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k)=【 】
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.
已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1/a+1/b<e.
已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)【 】
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
已知c>0.设P:函数y=cx在R上单调递减.Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.