关注优题吧,注册平台账号.
下列函数中是增函数的为【 】
A、 f(x)=-x
B、 f(x)=(2/3)x
C、 f(x)=x2
D、f(x)=
D
如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么【 】
定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间├ [0,+∞)上的图像与f(x)的图像重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)>g(b)-g(-a).其中成立的是【 】
设f(x),g(x)都是单调函数,有如下四个命题:①若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减;其中,正确的命题是【 】
已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1/a+1/b<e.
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
已知c>0.设P:函数y=cx在R上单调递减.Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.
设函数f(x)=2x(x-a)在区间(0,1)单调递减,则a的取值范围是【 】
下列函数中,在区间(0,+∞)上单调递增的是【 】
设实数x,y满足,则x+y=__________.
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
已知函数 f(x) = 2ln x + 1.(1) 若 f(x) ⩽ 2x + c, 求 c 的取值范围;(2) 设 a > 0, 讨论函数 g(x) = (f(x)-f(a))/(x-a) 的单调性.
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.
函数log0.5(x2+4x+4)在什么区间上是增函数?
在区间(-∞,0)上为增函数的是【 】
如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是【 】
以下哪个函数既是奇函数,又是减函数【 】
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)【 】
根据函数单调性的定义,证明函数f(x)=-x3 + 1在(-∞,+∞)是减函数.
已知函数f(x)=在R上单调递增,则a的取值范围是【 】
设 a ∈ R, 若存在定义域为 R 的函数 f(x) 满足: ① 对任意 x0 ∈ R, f(x0) 的值为 x02 或 x0; ② 关于 x 的方程 f(x) = a 无实数解. 则 a 的取值范围是_______________.
求函数y=的定义域.
函数y=中,x的取值范围是__________.
设,画出函数y=H(x-1)的图像.
对任意不等于1的正数a,函数f(x)=loga( x+3)的反函数的图像都经过点P,则点P的坐标为______.
设函数f(x)的定义域是[0,1],求函数f(x2)的定义域.
函数y=(0.2)-x+1的反函数是【 】
在下列各图中,y=ax2+bx与y=ax+b (ab≠0)的图像只能是【 】
给定实数a,a≠0,a≠1,设函数y=(x-1)/(ax-1)(x∈R,x≠1/a).证明:(Ⅰ)经过这个函数图像上任意两个不同的点的直线不平行于x轴;(Ⅱ)这个函数的图像关于直线y=x成轴对称图形.