设函数f(x)=2x(x-a)在区间(0,1)单调递减,则a的取值范围是【 】
A、(-∞,-2]
B、[-2,0)
C、(0,2]
D、[2,+∞)
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.
抛物线x2 - 4y - 3=0的焦点坐标为________.
对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是【 】
已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直, Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为__________.
经过抛物线焦点的弦与抛物线的轴成角θ,试证此弦在抛物线内之截线等于L/sin²θ ,其中L为正焦弦之长(经过焦点而又垂直于轴之弦,称为正焦弦).
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
设 O 为坐标原点, 直线 x = 2 与抛物线 C : y2 = 2px (p > 0) 交于 D, E 两点, 若 OD ⊥ OE, 则 C 的焦点坐标为【 】
斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.
设抛物线的顶点为 O, 焦点为 F , 准线为 l. P 是抛物线上异于 O 的一点, 过 P 作 PQ ⊥ l 于 Q, 则线段 FQ 的垂直平分线【 】
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
已知c>0.设P:函数y=cx在R上单调递减.Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)【 】