填空题(1991年湖南省

答案解析

0

讨论

已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,...uk=ak-ak-1b+ak-2b2-...+(-1)kbk;求证:un=un-1+un-2 (n≥3).

已知数列a1,a2,⋯an,⋯和数列b1,b2,⋯bn,⋯,其中a1=p,b1=q,an=pan-1,bn=qan-1+rbn-1 (n≥2)(p,q,r是已知常数,且q≠0,p>r>0).(1) 用p,q,r,n表示bn,并用数学归纳法加以证明;(2) 求.

全国统考数列与推理

已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.

设数列a1,a2,…,an,…的前n 项的和Sn与an的关系是Sn=-ban+1-1/(1+b)n ,其中b是与n无关的常数,且b≠1.(1) 求an与an-1的关系;(2) 写出用n和b表示an的表达式;(3) 当0<b<1时,求极限Sn .

是否存在常数a,b,c使得等式1∙22+2∙32+⋯+n∙(n+1)2=(an2+bn+c)对一切自然数n都成立?并证明你的结论.

有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.

给定正整数m>1,求正整数n的最小值,使得对任意正整数a1,a2,…,an,b1,b2,…,bn,存在整数x1,x2,…,xn,满足以下两个条件:(1) ∃i∈{1,2,…,n}使得xi与m互质;(2) aixi = bixi ≡ 0(mod m).

已知ai∈N* (i=1,2,…,9)对任意的k∈N* (2≤k≤8),ak=ak-1+1或ak=ak+1-1中有且仅有一个成立,a1=6,a9=9,则a1+⋯+a9的最小值为__________.

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1/bn ,n∈N*(i)证明{cn2-c2n}是等比数列;(ii)证明<2√2.