设复数z1 = 2 - i,z2 = 1 - 3i,则复数i/z1 + z2/5的虚部等于______.
在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】
复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.
设z是不为0的复数,若(z ̅ )2+1/z2 的实部和虚部均为整数,则|z|的值可能是【 】
求1的三次根(实根和虚根),证:任一虚根的平方等于另一虚根,且((-1+i√3)/2)n+((-1-i√3)/2)n=-1,式中n为整数,唯不能为3的倍数.
(sinθ +icosθ)n = sinnθ +icosnθ.