问答题(1990年上海市

复平面上点A,B对应的复数分别为z1=2,z2=-3,点P对应的复数为z,(z-z1)/(z-z2 )的辐角主值为φ.当点P在以原点为圆心,1为半径的上半圆周(不包括两个端点)上运动时,求φ的最小值.

答案解析

设z=x+yi,则x2+y2=1,y>0,(z-z1)/(z-z2 )=(x-2+yi)/(x+3+yi) = + .令ω=u+iv=(z-z1)/(z-z2 ),则v=5y/((x+3)2+y2 )>0,且z=(3ω+2)/(1-ω)又|z|=1 ∴ |3ω+2|=|1-ω|,即|(3u+2)+...

查看完整答案

讨论

在复平面内,(1+3i)(3-i)对应的点位于【 】

用数学归纳法证明等式对一切自然数n都成立.

设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2.再设z1,z2在复平面内的对应点是Z1,Z2.求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.

设O为复平面的原点,Z1和Z2为复平面内的两个动点,且满足:(Ⅰ) Z1和Z1所对应的复数的辐角分别为定值θ和-θ (0<θ<π/2);(Ⅱ) △OZ1 Z2的面积为定值S.求△OZ1 Z2的重心Z所对应的复数的模的最小值.

在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】

在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O为原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数.

已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数, i为虚数单位,且对于任意复数z,有w=z ̅0∙ z ̅ ,|w|=2|z|.(I)试求m的值,并分别写出x'和y'用x,y表示的关系式.(Ⅱ)将(x,y)作为点P的坐标, (x',y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

已知z1,z2是两个给定的复数,且z1≠z2,它们在复平面上分别对应于点Z1和点Z2.如果z满足方程|z-z1|-|z-z2|=0,那么z对应的点Z的集合是【 】

对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0 );②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈回输入端,再输出x2=f(x1 ),并依此规律继续下去,现定义f(x)=(4x-2)/(x+1). (Ⅰ)若输入x0=49/65,则由数列发生器产生数列{xn },请写出数列{xn }的所有项;(Ⅱ)若要数列发生器生产一个无穷的常数数列,试求输入的初始数据x0的值.(Ⅲ)若输入x0时,产生的无穷数列{xn }满足:对任意正整数n,均有xn<xn+1,求x0的取值范围.

2010年上海世博会园区每天9:00开园,20:00停止入园.在下面的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入__________.