[n(1-1/3)(1-1/4)(1-1/5)…(1-1/(n+1))]的值等于【 】
A、0
B、1
C、2
D、3
设甲、乙、丙是三个命题.如果甲是乙的必要条件;丙是乙的充分条件但不是乙的必要条件,那么【 】
如果AC < 0,且BC < 0,那么直线Ax + By + C = 0不通过【 】
从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙电视机各1台,则不同的取法共有【 】种。
如果圆锥曲线的极坐标方程为ρ=16/(5-3cosθ),那么它的焦点的极坐标为【 】
已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】
如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。
函数y=sin(2x+5π/2)的图像的一条对称轴方程是【 】
如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有【 】对。
有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.
已知{an}是公差不为零的等差数列,如果Sn是{an}的前n项和,那么(nan)/Sn )等于______.
是否存在常数a,b,c使得等式1∙22+2∙32+⋯+n∙(n+1)2=(an2+bn+c)对一切自然数n都成立?并证明你的结论.
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
求极限[1/(n2+1)+2/(n2+1)+3/(n2+1)+⋯2n/(n2+1)].
已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.