级数1!/102 -2!/103 +3!/104 -⋯是收敛的还是发散的?
将f(x)=x³-3x²+5x+6的根增一常数 ,使变后的方程缺x²项.
若相相之二抛物线具有相同之顶点,且其主轴互相垂直,试证其公切线必与二抛物线各切于其通径之一端.
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
若α,β,γ为方程x³+ax²+bx+c=0之根,试求行列式D=的值,但不许展开此行列式.
试求方程 3x³ + 8x² + 13x + 6 = 0 的根,已知一根为另两根倒数之和.
若n为正整数,试求(x+1/x)2n之展开式内x2n之系数.
若a1,a2,⋯,an为已知正数,试求atctan(a1-a2)/(1+a1 a2)+atctan(a2-a3)/(1+a2 a3)+⋯+atctan(an-1-an)/(1+an-1 an)的值.
有等高的两竿,自其底连线上一点望之,较近之竿的仰角为 60°,若自该点向此线之垂直方向行 80 尺而测之,得二竿之仰角为 45°,30°,试求二竿之高及其间的距离.
设正数数列{an },{bn}满足:a1=b1=1,bn=an bn-1-1/4(n≥2).求4+1/(a1 a2⋯ak )的最小值,其中m是给定的正整数.
在各项均为正数,且满足下列条件的数列{an}中,a9可能的最大值和最小值分别为M和m,则M+m的值为【 】(1) a7=40(2)对于任意正整数n,an+2=
数列{an },{bn}满足(3ak+5)=55,(ak+bk)=32,求bk 的值.
有半径为R之圆C,于其直径AB上取其半B1 B为直径作一圆C1,又取B1 B之半B2 B为直径作一圆C2,更取B2 B之半B3 B为直径作一圆C3,如是无限推之,求C1,C2,C3,⋯无穷个圆周之和.
Find the sum of n terms of the series whose nth term is 3(4n+4n²)-5n³.
Find the general term and the sum ofn terms of the series -3,-1,11,39,89,167.