问答题(2021年浙江省

已知数列{an}的前n项和为Sn,a1=-9/4,且4Sn+1=3Sn-9.

(1)求数列{an}的通项;

(2)设数列{bn}满足3bn+(n-4) an=0,记{bn}的前n项和为Tn,若Tn<λbn对任意n∈N*恒成立,求λ的范围.

答案解析

(1)当n=1时,4(a1+a2 )=3a1-9,解得a2=-27/16,当n≥2时,由4Sn+1=3Sn-9 ①得4Sn=3Sn-1-9 ②①-②得4an+1=3an,∵a2=-27/16≠0,∴an≠0,∴an+1/an =3/4,又a2/a1 =3/4,∴{an}是首项为-9/4,公比为3/4的等比数列,∴an=-9/4∙(3/4)n-1=-3(3/4)n;(2)由3bn+(n-4) an=0,得bn=-(n-4)/3 an=(n-4)(3/4)n,∴Tn=-3×3/4-2×(3/4)2-1×(3/4)3+0×(3/4)4+⋯+(n-4)×(3/4)n3/4 Tn=-3×(3/4)2-2×(3/4)3-1×(3/4)...

查看完整答案

讨论

已知数列{an}的首项a1=b(b≠0),它的前n项的和Sn=a1+a2+⋯+an (n≥1),并且S1,S2,⋯,Sn,⋯是一个等比数列,其公比为p(p≠0,且|p|<1).(Ⅰ) 证明:a2,a3,⋯,an,⋯(即{an}从第2项起)是一个等比数列.(Ⅱ) 设Wn=a1 S1+a2 S2+⋯+an Sn (n≥1),求Wn(用b,p表示).

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.

已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】

设{an}是等差数列, a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1, Tn 是它的前n项和.如果a3=b2,S5=2T2-6,Tn =9,求{an },{bn}的通项公式.

已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )的值是________.

在各项均为正数的等比数列{an}中,若a5a6 = 9,则log3a1 + log3a2 + ... + log3a10 =【 】

设{an}是由正数组成的等比数列,Sn是其前n项和.(1)证明(lgSn+lgSn+2)/2<lgSn+1.(2)是否存在常数c>0,使得[lg(Sn-c)+lg⁡(Sn+2-c)]/2=lg(Sn+1-c)成立?并证明你的结论.

如图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出. (I)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过r0.问冷轧机至少需要安装多少对轧辊?[一对轧辊减薄率= (输入该对的带钢厚度-从该对输出的带钢厚度) ÷输入该对的带钢厚度](Ⅱ)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600 mm.若第k对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,,在冷轧机输出的带钢上,疵点的间距为Lk.为了便于检修,请计算L1 、L2 、L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).

已知数列{cn},其中cn=2n+3n,且数列{cn+1 - pcn}为等比数列,求常数p.

设{cn},{bn}是公比不相等的两个比数列,cn =an+bn.证明数列{cn}不是等比数列.

设{an}是首项为1的正项数列,且(n+1) - n+an+1an=0(n=1,2,3⋅⋅⋅),则它的通项公式是an=______.

在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.(I)求点Pn的纵坐标bn的表达式.(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.

设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.

某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm, 10dm×6dm,24dm×3dm,三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么 Sk=________dm2.

已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.

数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】

定义Rp数列{an}:对p∈R满足:①a1+p≥0,a2+p=0;②∀n∈N*,a4n-1<a4n;③∀m,n∈N*,am+n∈{am+an+p,am+an+p+1}.(1)对前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{an}是R0数列 ,求a5的值;(3)是否存在p∈R,使得存在Rp数列{an},对∀n∈N*满足Sn≥S10?若存在,求出所有这样的p;若不存在,说明理由.

已知ai∈N* (i=1,2,…,9)对任意的k∈N* (2≤k≤8),ak=ak-1+1或ak=ak+1-1中有且仅有一个成立,a1=6,a9=9,则a1+⋯+a9的最小值为__________.

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1/bn ,n∈N*(i)证明{cn2-c2n}是等比数列;(ii)证明<2√2.

已知数列{an}满足a1=1,an+1= (n∈N* ).记{an}的前n项和为Sn,则【 】