已知数列{an}的前n项和为Sn,a1=-9/4,且4Sn+1=3Sn-9.
(1)求数列{an}的通项;
(2)设数列{bn}满足3bn+(n-4) an=0,记{bn}的前n项和为Tn,若Tn<λbn对任意n∈N*恒成立,求λ的范围.
已知数列{an}的前n项和为Sn,a1=-9/4,且4Sn+1=3Sn-9.
(1)求数列{an}的通项;
(2)设数列{bn}满足3bn+(n-4) an=0,记{bn}的前n项和为Tn,若Tn<λbn对任意n∈N*恒成立,求λ的范围.
(1)当n=1时,4(a1+a2 )=3a1-9,解得a2=-27/16,当n≥2时,由4Sn+1=3Sn-9 ①得4Sn=3Sn-1-9 ②①-②得4an+1=3an,∵a2=-27/16≠0,∴an≠0,∴an+1/an =3/4,又a2/a1 =3/4,∴{an}是首项为-9/4,公比为3/4的等比数列,∴an=-9/4∙(3/4)n-1=-3(3/4)n;(2)由3bn+(n-4) an=0,得bn=-(n-4)/3 an=(n-4)(3/4)n,∴Tn=-3×3/4-2×(3/4)2-1×(3/4)3+0×(3/4)4+⋯+(n-4)×(3/4)n3/4 Tn=-3×(3/4)2-2×(3/4)3-1×(3/4)...
查看完整答案已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.
已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】
设{an}是等差数列, a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1, Tn 是它的前n项和.如果a3=b2,S5=2T2-6,Tn =9,求{an },{bn}的通项公式.
已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )的值是________.
在各项均为正数的等比数列{an}中,若a5a6 = 9,则log3a1 + log3a2 + ... + log3a10 =【 】
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
是否存在常数a,b,c使得等式1∙22+2∙32+⋯+n∙(n+1)2=(an2+bn+c)对一切自然数n都成立?并证明你的结论.
已知{an}是公差不为零的等差数列,如果Sn是{an}的前n项和,那么(nan)/Sn )等于______.
有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.
设{an}是首项为1的正项数列,且(n+1) - n+an+1an=0(n=1,2,3⋅⋅⋅),则它的通项公式是an=______.
设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.
已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.
数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】
已知ai∈N* (i=1,2,…,9)对任意的k∈N* (2≤k≤8),ak=ak-1+1或ak=ak+1-1中有且仅有一个成立,a1=6,a9=9,则a1+⋯+a9的最小值为__________.