在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.
(I)求点Pn的纵坐标bn的表达式.
(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.
(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.
在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.
(I)求点Pn的纵坐标bn的表达式.
(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.
(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.
(I)由题意,an=n+1/2,∴bn=2000∙(a/10)n+1/2.(Ⅱ)∵函数y=2000∙(a/10)x (0<a<10)递减,∴对每个自然数n,有bn>bn+1>bn+2,则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+1+bn+2>bn,即(a/10)^2+(a/10)-1>0,解得a<-5(1+)或a>5(-1),∴5(-1)<a...
查看完整答案使log2(-x)<x+1成立的x的取值范围是__________.
设 a = log32, b = log53, c = 2/3, 则【 】
已知 55 < 84, 134 < 85. 设 a = log53, b = log85, c = log138, 则【 】
设 a = 30.7, b =(1/3)-0.8, c =log0.70.8, 则 a, b, c 的大小关系为【 】
已知x1,y1,x2,y2,x3,y3同时满足①x1<y1,x2<y2,x3<y3;②x1+y1=x2+y2=x3,y3;③x1 y1+x3 y3=2x2 y2,以下选项恒成立的是【 】
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.
已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)【 】
如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是【 】
根据函数单调性的定义,证明函数f(x)=-x3 + 1在(-∞,+∞)是减函数.
如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么【 】
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
已知c>0.设P:函数y=cx在R上单调递减.Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.