问答题(2000年上海市

在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.

(I)求点Pn的纵坐标bn的表达式.

(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.

(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.

答案解析

(I)由题意,an=n+1/2,∴bn=2000∙(a/10)n+1/2.(Ⅱ)∵函数y=2000∙(a/10)x (0<a<10)递减,∴对每个自然数n,有bn>bn+1>bn+2,则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+1+bn+2>bn,即(a/10)^2+(a/10)-1>0,解得a<-5(1+)或a>5(-1),∴5(-1)<a...

查看完整答案

讨论

已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,...uk=ak-ak-1b+ak-2b2-...+(-1)kbk;求证:un=un-1+un-2 (n≥3).

已知数列a1,a2,⋯an,⋯和数列b1,b2,⋯bn,⋯,其中a1=p,b1=q,an=pan-1,bn=qan-1+rbn-1 (n≥2)(p,q,r是已知常数,且q≠0,p>r>0).(1) 用p,q,r,n表示bn,并用数学归纳法加以证明;(2) 求.

全国统考数列与推理

已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.

设数列a1,a2,…,an,…的前n 项的和Sn与an的关系是Sn=-ban+1-1/(1+b)n ,其中b是与n无关的常数,且b≠1.(1) 求an与an-1的关系;(2) 写出用n和b表示an的表达式;(3) 当0<b<1时,求极限Sn .

是否存在常数a,b,c使得等式1∙22+2∙32+⋯+n∙(n+1)2=(an2+bn+c)对一切自然数n都成立?并证明你的结论.

有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.

给定正整数m>1,求正整数n的最小值,使得对任意正整数a1,a2,…,an,b1,b2,…,bn,存在整数x1,x2,…,xn,满足以下两个条件:(1) ∃i∈{1,2,…,n}使得xi与m互质;(2) aixi = bixi ≡ 0(mod m).

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n, an与2的等差中项等于Sn与2的等比中项.(I)写出数列{an}的前3项;(Ⅱ)求数列{an}的通项公式(写出推证过程);(Ⅲ)令bn=1/2(an+1/an +an/an+1 )(n∈N),求(b1+b2+⋯+bn-n).

设{an}是首项为1的正项数列,且(n+1) - n+an+1an=0(n=1,2,3⋅⋅⋅),则它的通项公式是an=______.