填空题(2021年全国高中数学联赛

设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.

答案解析

√3-1

【解析】

解答过程见word版

讨论

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.

设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白,怎样确定画画的高与宽的尺寸,能使宣传画所用纸张面积最小?如果要求λ∈[2/3,3/4],那么λ为何值时,能使宣传画所用的纸张面积最小?

设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则【 】

下列函数中最小值为4的是【 】

若a>0,b>0,则1/a+a/b2 +b的最小值为__________.

已知a>0,函数f(x)=ax-xex.(1)求函数y=f(x)在点(0,f(0))处的切点的方程;(2)证明函数f(x)存在唯一极值点;(3)若存在a,使得f(x)≤a+b对任意的x∈R成立,求实数b的取值范围.

某生产队要建立一个形状是直角梯形的苗圃,其两邻边借用夹角为135°的两面墙,另外两边是总长为30米的篱笆(如图,AD和DC为墙),问篱笆的两边各多长时,苗圃的面积最大?最大面积是多少?

某工厂科研小组,对一项生产工艺过程总结出产量指标函数和消耗指标函数分别为:f1 (x)=ax2+1/2 x+C和f2 (x)=ax2+bx+5/4,且知f1 (-1)=f2 (-1)=f1 (3)=f2 (3)=2.(1)分别求出产量指标函数f1 (x)和消耗指标函数f2 (x)的具体表达式;(2)问因素x取何值时,f1 (x)和f2 (x)有最大值或最小值,最大值或最小值各是多少?(3)画出所求出的函数的略图.

将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=∑1≤i<j≤5xi xj .问:(1)当x1,x2,x3,x4,x5取何值时S取到最大值?(2)进一步地,对任意1≤i<j≤5有|xi-xj |≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值?说明理由.

已知函数f(x)=2x3-9x2+ax+5在x=1处取得极大值,在x=b处取得极小值,则a+b的值为【 】

根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP是指国内生产总值)4035亿元,2000年上海市GDP预期增长9%.市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%.若GDP与人口均按这样的速度增长,则要使本市年人均GDP达到或超过1999年的2倍,至少需______年.(按:1999年本市常住人口总数约1300万)

根据指令(r,θ)(r≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ;θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r.(I)现机器人在直角坐标系的坐标原点,且面对x轴正方向.试给机器人下一个指令,使其移动到点(4,4).(Ⅱ)机器人在完成该指令后,发现在点(17,0)处有小球正向坐标原点做匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位).

设a>0,f(x)=ex/a+a/ex 是R上的偶函数.(Ⅰ)求a的值.(Ⅱ)证明f(x)在(0,+∞)上是增函数.

函数y=2-x+1(x>0)的反函数是【 】

若过点(a,b)可以作曲线y=ex的两条切线,则【 】

已知a>0且a≠1,函数f(x)=xa/ax (x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.

已知f(x)=3/x+2,则f-1 (1)=__________.

若2a=5b=10,则1/a+1/b=【 】

设a∈R,函数f(x)=,若f(x)在区间(0,+∞)内恰好有6个零点,则a的取值范围是【 】

已知函数f(x)=x2+1/4,g(x)=sinx,则图像为如图的函数可能是【 】