填空题(2021年上海市

已知f(x)=3/x+2,则f-1 (1)=__________.

答案解析

-3

讨论

如图,正方形ABCD的边长为3,则∙=__________.

已知圆x2+y2-2x-4y=0,则该圆的圆心坐标为__________.

已知A={x│2x≤1},B={-1,0,1},则A∩B=__________.

z1=1+i,z2=2+3i,则z1+z2=__________.

定义Rp数列{an}:对p∈R满足:①a1+p≥0,a2+p=0;②∀n∈N*,a4n-1<a4n;③∀m,n∈N*,am+n∈{am+an+p,am+an+p+1}.(1)对前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{an}是R0数列 ,求a5的值;(3)是否存在p∈R,使得存在Rp数列{an},对∀n∈N*满足Sn≥S10?若存在,求出所有这样的p;若不存在,说明理由.

已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.

已知函数f(x)=(3-2x)/(x2+a).(1)若a=0,求y=f(x)在(1,f(1))处的切线方程;(2)若函数f(x)在x=-1处取得极值,求f(x)的单调区间,以及最大值和最小值.

为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即k个人的拭子合并检测,若为阴性,则可确定所有样本都是阴性的,若为阳性,则还需要对本组的每个人再做检测,现有100人,已知其中2人感觉病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为1/11,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的数学期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).

已知正方体ABCD-A1 B1 C1 D1,点E为A1 D1的中点,直线B1 C1交平面CDE于点F. (1)求证:点F为B1 C1的中点;(2)若点M为棱A1 B1上一点,且二面角M-CF-E的余弦值为/3,求A1 M/A1B1 .

已知在△ABC中,c=2bcosB,C=2π/3.(1)求B的大小;(2)在三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求BC边上的中线长度.①c=b;②周长为4+2;③面积为S△ABC=3/4.

设函数f(x)=cosx+log2⁡x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.

函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?

已知函数的定义域为R,f(x)>f(x-1)+f(x-2)且x<3时f(x)=x,则下列结论中一定正确的是【 】

已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.

设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】

在区间(-∞,0)上为增函数的是【 】

已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)【 】

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.

用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量1/2,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).( I )试规定f(0)的值,并解释其实际意义.(Ⅱ)试根据假定写出函数f(x)应该满足的条件和具有的性质.(Ⅲ)设f(x)=1/(1+x2 ).现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.

已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1/a+1/b<e.