问答题(2001年上海市

用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量1/2,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).

( I )试规定f(0)的值,并解释其实际意义.

(Ⅱ)试根据假定写出函数f(x)应该满足的条件和具有的性质.

(Ⅲ)设f(x)=1/(1+x2 ).

现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.

答案解析

(I)f(0)=1表示没有用水洗时,蔬菜上的农药量将保持原样.(Ⅱ)函数f(x)应该满足的条件和具有的性质是:f(0)=1,f(1)=1/2,在├ [0,+∞)上单调递减,且0<f(x)≤1.(Ⅲ)设仅清洗一次,残留的农药量为f1=1/(1+a2 ),清洗两次后,残留的农药量为f2==16/(4+a...

查看完整答案

讨论

函数y=log2 (2x-1)/(3-x)的定义域为__________.

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投人将比上年减少1/5.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1/4.( I )设n年内(本年度为第一年)总投人为an万元,旅游业总收人为bn万元.写出an,bn的表达式.(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?

设函数f(x)=,则满足f(x)=1/4的x值为______.

已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.

已知函数f(x)的定义域为[0,+∞),且满足f(x)=f(1/(1+x)),记函数的值域为Af,若a>0,满足{y│y=f(x),x∈[0,a] }=Af,则实数a的取值范围为__________.

设函数f(x)=,若f(x0)>1,则x0的取值范围是【 】

定义函数f(x)代表|x|-2与x2-ax+3a-5中较小的数.若f(x)至少有3个零点,则a的取值范围为__________.

A motion picture film 120 feet long contains a certain number of individual pictures.If each picture were 0.1 of an inch shorter, the same film would contain 720 more pictures, how long is each picture?

函数f,g:R⟶R定义为f(x)=x²+5/12,g(x)=,区域{(x,y)∈R×R||x|≤3/4,0≤y≤min⁡[f(x),g(x)]}的面积为α,则9α的值为________.

甲,乙两车分别从 A,B 两地同时出发相向而行,1 小时后,甲车到达 C 点,乙车到达 D点则能确定 AB 两地的距离【 】(1)已知 C,D 两地距离(2) 已知甲,乙两车速度比

已知关于x的实系数二次方程x2+ax+b=0有两个实数根a,β.证明:(I)如果|α|<2,|β|<2,那么2|a|<4+b且|b|<4;(Ⅱ)如果2|a|<4+b且|b|<4,那么|α|<2,β|<2.

某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?

设二次函数f(x)=ax2+bx+c(a>0),方程f(x) - x=0的两个根x1,x2满足0<x1<x2<1/a.(Ⅰ)当x∈(0,x1 )时,证明x<f(x)<x1;(Ⅱ)设函数f(x)的图像关于直线x=x0对称,证明x0<x1/2.

根据指令(r,θ)(r≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ;θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r.(I)现机器人在直角坐标系的坐标原点,且面对x轴正方向.试给机器人下一个指令,使其移动到点(4,4).(Ⅱ)机器人在完成该指令后,发现在点(17,0)处有小球正向坐标原点做匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位).

试求方程式(x-2)(x-3)(x-4)=1·2·3之诸根.

二数之和为 36,其大数之二倍较小数之三倍多 2,试问各数为何.

某甲作工若干日,共得工洋 36 圆.如其每日多挣二角,则虽少作二日,亦可得相等之工资.问其每日工价若干,又问其作若干日.

南京大学解方程

油价上涨5%后,加一箱油比原来多花 20 元,一个月后油价下降了 4%,则加一箱油需要花【 】元

已知甲、乙两公司的利润之比为 3:4,甲、丙两公司的利润之比为 1:2.若乙公司的利润为 3000 万元,则丙公司的利润为【 】万元