定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果 f(x)=lg(10x+1),x∈(-∞,+∞),那么【 】
A、g(x)=x,h(x)=lg(10x+10-x+2)
B、g(x)=1/2·[lg(10x+1)+x],h(x)=1/2[lg(10x+1)-x]
C、g(x)=x/2,h(x)=lg(10x+1)-x/2
D、g(x)=-x/2,h(x)=lg(10x+1)+x/2
定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果 f(x)=lg(10x+1),x∈(-∞,+∞),那么【 】
A、g(x)=x,h(x)=lg(10x+10-x+2)
B、g(x)=1/2·[lg(10x+1)+x],h(x)=1/2[lg(10x+1)-x]
C、g(x)=x/2,h(x)=lg(10x+1)-x/2
D、g(x)=-x/2,h(x)=lg(10x+1)+x/2
C
函数y=arccos(sinx)(- π/3<x<2π/3)的值域是【 】
已知过球面上A,B,C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是【 】
设函数f(x) = 1 - (-1≤x≤0),则函数y=f-1(x)的图像是【 】
有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有【 】
如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是【 】
设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】
若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k)=【 】
己知函数f(x)=1/(1+2x),则对任意实数x,有【 】
设函数f(x)=cosx+log2x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.
函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?
已知函数的定义域为R,f(x)>f(x-1)+f(x-2)且x<3时f(x)=x,则下列结论中一定正确的是【 】
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
若定义在 R 的奇函数 f(x) 在 (−∞, 0) 单调递减, 且 f(2) = 0, 则满足 xf(x − 1) ⩾ 0 的 x 的取值范围是【 】
已知 y = f(x) 是奇函数, 当 x ⩾ 0 时, f(x) = x2/3 , 则 f(−8) 的值是______.