设f(x)是(-∞,+∞)上的奇函数, f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于【 】
A、0.5
B、-0.5
C、1.5
D、-1.5
设f(x)是(-∞,+∞)上的奇函数, f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于【 】
A、0.5
B、-0.5
C、1.5
D、-1.5
B
设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】
等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为【 】
椭圆的极坐标方程为ρ=3/(2-cosθ ),则它在短轴上的两个顶点的极坐标是【 】
等比数列{an}的首项a1=-1,前n项和为Sn,若S10/S5 =31/32,则Sn 等于【 】
将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,,则三棱锥D-ABC的体积为【 】
若0<α<π/2,则acrsin[cos(π/2+a) ]+arccos[sin(π+α) ]等于【 】
若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k)=【 】
己知函数f(x)=1/(1+2x),则对任意实数x,有【 】
设函数f(x)=cosx+log2x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.
函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】
已知函数f(x)及其导函数 的定义域均为R,记g(x)=f' (x),若f(3/2-2x),g(2+x)均为偶函数,则【 】
油价上涨5%后,加一箱油比原来多花 20 元,一个月后油价下降了 4%,则加一箱油需要花【 】元
已知甲、乙两公司的利润之比为 3:4,甲、丙两公司的利润之比为 1:2.若乙公司的利润为 3000 万元,则丙公司的利润为【 】万元
甲乙两人从同一地点出发,甲先出发 10 分钟,若乙跑步追赶甲,则 10 分钟追上,若骑车追赶甲,每分钟比跑步多行 100 米,则 5 分钟追上,那么甲每分钟走的距离为【 】米.
方程式 x³ - 9x² + 23x - 15 =0之诸根成为等差级数,试求之.
二次方程式 x² +px +q = 0 有二相异实根时,若 k 为不等于 0 之常数,则方程式 x² +px + g + k(2x + p) = 0 亦有二实根且仅有一根在前二根之间,试证之.