不定项选择(2023年新高考Ⅰ

已知函数f(x)的定义域为R,f(xy)=y²f(x)+x²f(y),则【 】

A、f(0)=0

B、f(1)=0

C、f(x)为偶函数

D、x=0为f(x)的极小值点

答案解析

ABC(1)令x=y=0,则f(0)=0×f(x)+0×f(0)=0,A正确;(2)令x=y=1,则f(1)=1×f(1)+1×f(1)⟹f(1)=0,B正确;(3)令x=y=-1,则f(1)=(-1)²×f(-1)+(-1)²×f(-1)=2×f(-1)=0,∴f(-1)=0;再令y=-1,则f(-x)=(...

查看完整答案

讨论

已知函数f(x)=2x3-9x2+ax+5在x=1处取得极大值,在x=b处取得极小值,则a+b的值为【 】

Find the maximum value of (7-x)4 (2+x)6 when x lies between 7 and 2.

Find the maximum value of (5+x)(2+x)/(1-x).

设α=sin2k⁡(π/6) ,函数g:[0,1]→R定义为g(x)=2αx+2α(1-x).下列叙述正确的有【 】

求(x+2)/(2x²+3x+6)之最大值.

设(a-1)(b-1)>0,a,b,θ皆为实数,求(a+cosθ)(b+cosθ)/(1+cosθ)之极小值.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.

在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据,我们规定所测量物理量的“最佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=____________.

甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?