若函数f(x)=为奇函数,求参数a的值为________.
若函数f(x)=为奇函数,求参数a的值为________.
1
【解析】
代入特值求解,利用f(-1)=-f(1)即-a2-1=-(1+a),解得a=0或a=1,
经检验a=0不符合题意,舍去,
所以,a=1.
已知函数f(x)及其导函数 的定义域均为R,记g(x)=f' (x),若f(3/2-2x),g(2+x)均为偶函数,则【 】
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k)=【 】
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
己知函数f(x)=1/(1+2x),则对任意实数x,有【 】
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
设函数 f(x) = x3 − 1/x3 , 则 f(x)【 】
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.
若定义在 R 的奇函数 f(x) 在 (−∞, 0) 单调递减, 且 f(2) = 0, 则满足 xf(x − 1) ⩾ 0 的 x 的取值范围是【 】
已知 y = f(x) 是奇函数, 当 x ⩾ 0 时, f(x) = x2/3 , 则 f(−8) 的值是______.
下面给出的函数中,哪一个函数既是区间(0,π/2)上的增函数,又是以π为周期的偶函数【 】
F(x)=(1+)f(x)(x≠0)是偶函数,且f(x)不恒等于零,则f(x)【 】
已知函数f(x)=x3(a∙2x - 2-x)是偶函数,则a=__________.
设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b,若f(0)+f(3)=6,则f(9/2)=【 】
记f(x)是定义域为R的奇函数,且f(1+x)=f(-x),若f(-1/3)=1/3,则f(5/3)=【 】
设函数f(x)=(1-x)/(1+x),则下列函数中为奇函数的是【 】