问答题(1946年福建协合大学

求(x+2)/(2x²+3x+6)之最大值.

答案解析

暂无答案

讨论

已知函数f(x)=2x3-9x2+ax+5在x=1处取得极大值,在x=b处取得极小值,则a+b的值为【 】

如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A孔流人,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问:当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?

Find the maximum value of (7-x)4 (2+x)6 when x lies between 7 and 2.

Find the maximum value of (5+x)(2+x)/(1-x).

设α=sin2k⁡(π/6) ,函数g:[0,1]→R定义为g(x)=2αx+2α(1-x).下列叙述正确的有【 】

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.

在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据,我们规定所测量物理量的“最佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=____________.

甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.

设函数f(x)=若f(x)存在最小值,则a的一个取值为________;a的最大值为___________.

已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.

已知函数f(x)的定义域为[0,+∞),且满足f(x)=f(1/(1+x)),记函数的值域为Af,若a>0,满足{y│y=f(x),x∈[0,a] }=Af,则实数a的取值范围为__________.

已知f(x)=log3(x+a)+log3(6-x).若将函数y=f(x)的图像向下平移m(m>0)个单位,经过点(3,0),(5,0),求a与m的值;若a>-3且a≠0,解关于x的不等式f(x)≤f(6-x).

Let R+ denote the set of positive real numbers. Find all functions f:R⟶R such that for each x∈R+, there is exactly one y∈R+ satisfying:xf(y)+yf(x)≤2.译文:设R+表示所有正实数构成的集合.求所有函数f:R+→R+,使得对任意x∈R+,恰好有一个y∈R+满足条件:xf(y)+yf(x)≤2.

设函数f(x)=,若f(x0)>1,则x0的取值范围是【 】

定义函数f(x)代表|x|-2与x2-ax+3a-5中较小的数.若f(x)至少有3个零点,则a的取值范围为__________.

函数f(x)=|x2-1|/x的图像为【 】

若xi为大于1的整数,记f(xi)为xi的最大素因数.令xi+1=xi-f(xi)(i为自然数).(1)证明:对任意大于1的整数x0,存在自然数k(x0),使得xk(x0)+1=0;(2)令V(x0)为f(x0 ),f(x1 ),⋯,f(xk(x0))中不同的个数,求V(2),V(3),⋯,V(781)中的最大数,并说明理由.

220之竞走,甲许乙先发5码,乙许丙先发9码,则无胜负;若于880码竞走,问甲许丙先发 50 码,尚胜若干码?