问答题(2000年上海市

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.

答案解析

当a=1/2时,f(x)=x+1/2x+2,

∵f(x)在区间[1,+∞)为增函数,

∴f(x)在区间[1,+∞)的最小值为f(1)=7/2.

讨论

设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.

已知函数f(x)=cosαx-ln⁡(1-x²),若x=0是f(x)的极大值点,求α的取值范围.

在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据,我们规定所测量物理量的“最佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=____________.

若a>0,b>0,则1/a+a/b2 +b的最小值为__________.

将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=∑1≤i<j≤5xi xj .问:(1)当x1,x2,x3,x4,x5取何值时S取到最大值?(2)进一步地,对任意1≤i<j≤5有|xi-xj |≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值?说明理由.

已知a>0,函数f(x)=ax-xex.(1)求函数y=f(x)在点(0,f(0))处的切点的方程;(2)证明函数f(x)存在唯一极值点;(3)若存在a,使得f(x)≤a+b对任意的x∈R成立,求实数b的取值范围.

已知函数f(x)=2x3-9x2+ax+5在x=1处取得极大值,在x=b处取得极小值,则a+b的值为【 】

Find the maximum value of (5+x)(2+x)/(1-x).