如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a.
(Ⅰ)求截面EAC的面积;
(Ⅱ)求异面直线A1 B1与AC之间的距离;
(Ⅲ)求三棱锥B1-EAC的体积.
如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a.
(Ⅰ)求截面EAC的面积;
(Ⅱ)求异面直线A1 B1与AC之间的距离;
(Ⅲ)求三棱锥B1-EAC的体积.
(Ⅰ)如图,连接BD交AC于O,连接EO. ∴底面ABCD是正方形,∴DO⊥AC.又∵ED⊥底面AC.∴EO⊥AC.∴∠EOD是面EAC与底面AC所成二角面的平面角,∴∠EOD=45°.DO=/2 a,AC= a,EO=/2 a∙sec45°=a,故S_(△EAC)=/2 a2.(Ⅱ)由题设ABCD-A1 B1 C1 D1是正四棱柱,得A1 A⊥底面AC,A1 A⊥AC.又A1 A⊥A1 B1∴A1 A是异面直线A1 B1与AC间的公垂线∵D1 B//面EAC,且面D1 BD与面EAC交线为EO,∴D1 B//EO.又O是DB的中点,∴E是D1 D...
查看完整答案将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,,则三棱锥D-ABC的体积为【 】
已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的大小是【 】
已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={ Q∈S|PQ≤5},则T表示的区域的面积为【 】
如图所示三棱锥,底面为等边△ABC,O为AC中点,PO⊥平面ABC,AP=AC=2.(1)求三棱锥P-ABC的体积;(2)若M为BC中点,求PM与平面PAC所成角的大小.
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
设三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=直角.求证:ABC是锐角三角形.
如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.
已知三个平面两两相交,有三条交线.求证这三条交线交于一点或互相平行.
如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点.求证:平面PAC垂直于平面PBC.
如图,正四棱台中,A'D'所在的直线与BB'所在的直线是【 】
如图,已知圆柱的底面半径是3,高是4,A,B两点分别在两底面的圆周上,并且AB=5,那么直线AB与轴oo'之间的距离等于______.
如图,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是【 】
已知:两条异面直线a,b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a,b上分别取点E,F,设A1E=m,AF=n. 求证:EF=.
如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC=60°,E为BC的中点. (1)证明:BC⊥AD;(2)点F满足(EF)→=(DA)→,求二面角D-AB-F的正弦值.
如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.
如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.
如图,四棱锥S-ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.
如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC,SC于D,E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.
如图,已知ABCD是边长为4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.