单项选择(1993年全国统考

若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是【 】

A、三棱锥

B、四棱锥

C、五棱锥

D、六棱锥

答案解析

D

讨论

如图所示三棱锥,底面为等边△ABC,O为AC中点,PO⊥平面ABC,AP=AC=2.(1)求三棱锥P-ABC的体积;(2)若M为BC中点,求PM与平面PAC所成角的大小.

P -ABC 为一正三角锥,其底面三角形 ABC 正三角形之每边为 10 尺,而APB、BPC、CPA 三个面角均为 30°,求此三角锥之高.

设一四面体有一三面角与另一四面体的一三面角对称,求证:其体积之比等于此两三面角三棱分别的乘积之比.

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.

如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.

如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E,F分别为SC,AB的中点,那么异面直线EF与SA所成的角等于【 】

如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有【 】对。

如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。

设正六棱锥的底面边长为1,侧棱长为,那么它的体积为【 】

某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【 】

在正四棱台ABCD-A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为______.

底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.

如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】

如下图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB, 将剩余部分沿OC,OD折叠,使OA,OB重合,则A(B),C,DCO为顶点的四面体的体积是_______.

一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.

如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.

如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=π/3. (Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(Ⅱ)求这个平行六面体的体积.

设P是一个凸多面体,满足以下两个性质:(i) P的每一个顶点恰属于 3 个不同的面;(ii) 对任意 k ≥3, P 中 k 边形面都恰有偶数个。有一只蚂蚁从某条棱的中点出发,沿棱爬行,走一条闭合路径 L ,经过 L 上每一点恰好一次,最终回到出发点。 L 将 P 的表面分为两部分,使得对任意的 k ≥3,两部分中 k 边形面的个数相等。求证:蚂蚁在爬行中向左转和向右转的次数相等。

已知正三棱台上底面边长为2,下底面边长为4,且侧棱与底面所成的角是45°,那么这个正三棱台的体积等于__________.