问答题(2022年上海市

如图所示三棱锥,底面为等边△ABC,O为AC中点,PO⊥平面ABC,AP=AC=2.

(1)求三棱锥P-ABC的体积;

(2)若M为BC中点,求PM与平面PAC所成角的大小.

答案解析

(1) VP-ABC=1/3 S△ABC×|OP|=1/3×√3/4×22×√3=1.(2)取CO的中点M,连接MN,PN,∵BO⊥AC,BO⊥PO,∴BO⊥平面PAC.又MN//BO,∴MN⊥平面P...

查看完整答案

讨论

如图,在三棱锥A-BCD中,平面ABD丄平面BCD,AB=AD,O为BD的中点. (1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E-BC-D的大小为45°,求三棱锥A-BCD的体积.

已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为【 】

如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1) 证明:平面PAM⊥平面 PBD;(2) 若PD=DC=1,求四棱锥P-ABCD 的体积.

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=,M,N分别为BC,PC的中点PD⊥DC,PM⊥MD. (1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.

如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.

已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={ Q∈S|PQ≤5},则T表示的区域的面积为【 】

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.

如图, 四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.(1) 证明: l ⊥ 平面 P DC;(2) 已知 PD = AD = 1, Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.

设三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=直角.求证:ABC是锐角三角形.