已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={ Q∈S|PQ≤5},则T表示的区域的面积为【 】
A、3π/4
B、π
C、2π
D、3π
若(2x-1)4=a4 x4+a3 x3+a2 x2+a1 x+a0,则a0+a2+a4=【 】
设{an}是公差不为0的无穷等差数列,则“{an}为递增数列”是“存在正整数N0,当n>N0时,an>0”的【 】
己知函数f(x)=1/(1+2x),则对任意实数x,有【 】
若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
已知全集U={ x|-3<x<3},集合A={ x|-2<x≤1},则∁UA=【 】
已知函数f(x)=ax-1/x-(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.
记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinC sin(A-B)=sinBsin(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.
如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.
如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E,F分别为SC,AB的中点,那么异面直线EF与SA所成的角等于【 】
如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有【 】对。
如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。
将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,,则三棱锥D-ABC的体积为【 】
已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的大小是【 】
在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】
在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则【 】
如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】
如下图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB, 将剩余部分沿OC,OD折叠,使OA,OB重合,则A(B),C,DCO为顶点的四面体的体积是_______.
一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.
已知正三棱台上底面边长为2,下底面边长为4,且侧棱与底面所成的角是45°,那么这个正三棱台的体积等于__________.