问答题(2022年全国甲·文

小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.

  

(1)证明:EF//平面ABCD;

(2)求该包装盒的容积(不计包装盒材料的厚度).

答案解析

(1)分别取AB,BC的中点M,N,连接MN,因为△EAB,△FBC为全等的正三角形,所以EM⊥AB,FN⊥BC,EM=FN,又平面EAB⊥平面ABCD,平面EAB∩平面ABCD=AB,EM⊂平面EAB,所以EM⊥平面ABCD,同理可得FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,而EM=FN,所以四边形EMNF为平行四边形,所以EF//MN,又EF⊄平面ABCD,MN⊂平面ABCD,所以EF//平面ABCD. (2)分别取AD,DC的中点K,L,由(1)知,EF//MN且EF=M...

查看完整答案

讨论

如图为某几何体的三视图, 则该几何体的表面积是【 】

已知正方形的边长为 a ,求侧面积等于这个正方形的面积、高等于这个正方形边长的直圆柱体的体积

已知圆柱的侧面展开图是连长为2与4的矩形,求圆柱的体积.

如下图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB, 将剩余部分沿OC,OD折叠,使OA,OB重合,则A(B),C,DCO为顶点的四面体的体积是_______.

一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.

如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.

如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=π/3. (Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(Ⅱ)求这个平行六面体的体积.

如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【 】

设P是一个凸多面体,满足以下两个性质:(i) P的每一个顶点恰属于 3 个不同的面;(ii) 对任意 k ≥3, P 中 k 边形面都恰有偶数个。有一只蚂蚁从某条棱的中点出发,沿棱爬行,走一条闭合路径 L ,经过 L 上每一点恰好一次,最终回到出发点。 L 将 P 的表面分为两部分,使得对任意的 k ≥3,两部分中 k 边形面的个数相等。求证:蚂蚁在爬行中向左转和向右转的次数相等。

已知圆柱的轴截面是正方形,它的面积是4cm2,那么这个圆柱的体积是__________cm3 (结果中保留π).

直升飞机上一点 P 在地平面 M 上的正射影是 A .从P看地平面上一物体 B (不同于 A ) ,直线P B 垂直于飞机窗玻璃所在的平面 N(如图).证明:平面 N 必与平面 M 相交,且交线 l 垂直于 AB.

如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.

2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠穆高峰测量法之一,下图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同水平面上的投影A',B',C'满足∠A' C' B'=45°,∠A' B'C'=60°,由C点测得B点的仰角为15°,BB'与CC'的差为100,由B点测得A点的仰角为45°,则A,C两点到水平面A'B'C'的高度差AA'-CC'约为(≈1.732)【 】

已知正方体ABCD-A1 B1 C1 D1,点E为A1 D1的中点,直线B1 C1交平面CDE于点F. (1)求证:点F为B1 C1的中点;(2)若点M为棱A1 B1上一点,且二面角M-CF-E的余弦值为/3,求A1 M/A1B1 .

如图,在棱长为2的正方体ABCD-A1 B1 C1 D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1 F//平面A1 EC1;(2)求直线AC1与平面A1 EC1所成角的正弦值;(3)求二面角A-A1 C1-E的正弦值.

如图,在正四棱柱ABCD-A1 B1 C1 D1中,AB=2,AA1=4,点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2 C2//A2 D2;(2)点P在棱BB1上,当二面角P-A2 C2-D2为150°时,求B2 P.

坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素,安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形,若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD的夹角的正切值均为√14/5,则该五面体的所有棱长之和为【 】

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=AC=2,BC=1,AB=√3. (Ⅰ)若AD⊥PB,证明:AD//平面PBC;(Ⅱ)若AD⊥DC,且二面角A-CP-D的正弦值为√42/7,求AD.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD. △ABC 是底面的内接正三角形,P 为 DO 上一点, PO = DO.(1) 证明: PA ⊥ 平面 PBC;(2) 求二面角 B − PC − E 的余弦值.

如图, 已知三棱柱 ABC − A1B1C1 的底面是正三角形, 侧面 BB1C1C 是矩形, M, N 分别为 BC, B1C1 的中点, P 为 AM 上一点, 过 B1C1 和 P 的平面交 AB 于 E, 交 AC 于 F .(1) 证明: AA1 // MN, 且平面 A1AMN ⊥ 面 EB1C1F ;(2) 设 O 为 △A1B1C1 的中心, 若 AO = AB = 6, AO//平面 EB1C1F , 且 ∠MPN = π/3 , 求四棱锥 B −EB1C1F 的体积.