单项选择(2023年北京市

坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素,安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形,若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD的夹角的正切值均为√14/5,则该五面体的所有棱长之和为【 】

A、102m

B、112m

C、117m

D、125m

答案解析

C如图,过E做EO⊥平面ABCD,垂足为O,过E分别做EG⊥BC,EM⊥AB,垂足分别为G,M,连接OG,OM.由题意得,等腰梯形所在的面、等腰三角形所在的面与底面的夹角分别为∠EMO,∠EGO,则tan∠EMO=tan∠EGO=√14/5.∵EO⊥平面ABCD,BC⊂平面ABCD,∴EO⊥BC.∵EG⊥BC,EO,EG⊂平面EOG,EO∩EG=E,∴B...

查看完整答案

讨论

若xy≠0,则“x+y=0”是“y/x+x/y=-2”的【 】

在△ABC中,(a+c)(sinA-sinC)=b(sinA-sinB),则∠C=【 】

已知抛物线C:y²=8x的焦点为F,点M在C上.若M到直线x=-3距离为5,则|MF|=【 】

(2x-1/x)5的展开式中x的系数为【 】

下列函数中,在区间(0,+∞)上单调递增的是【 】

已知向量a→,b→满足a→+b→=(2,3),a→-b→=(-2,1),则|a→ |²-|b→ |²=【 】

在复平面内,复数z对应的点的坐标是(-1,√3),则z的共轭复数z ̅=【 】

已知集合M={x│x+2≥0},N={x|x-1<0},则M∩N=【 】

设ABC是一个正三角形.点A1,B1,C1在三角形ABC的内部,且满足A1 B=A1 C,B1 A=B1 C,C1 A=C1 B及∠BA1 C+∠CB1A+∠AC1 B=480°.设直线BC1与CB1交于点A2,AC1与A1 C交于B2,AB1与A1 B交于C2.证明:若三角形A1 B1 C1的三边长度两两不等,则三角形AA1 A2,BB1 B2,CC1 C2的外接圆都经过两个公共点.

设n是一个正整数.日式三角是将1+2+…+n个圆排成正三角形的形状,使得对 i= 1,2,…,n,从上到下的第i行恰有个圆,且其中恰有一个被染为红色.在日式三角内,忍者路径是指一串由n个圆组成的序列,从最上面一行的圆开始,每次从当前圆连接到它下方相邻的两个圆之一,直至到达最下面一行的某个圆为止.下图为一个n=6的日式三角,其中画有一条包含两个红色圆的忍者路径.求最大的整数k(用n表示),使得在每个日式三角中都存在一条忍者路径,它包含至少k个红色圆.

如图,已知圆柱的底面半径是3,高是4,A,B两点分别在两底面的圆周上,并且AB=5,那么直线AB与轴oo'之间的距离等于______.

如图,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是【 】

已知:两条异面直线a,b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a,b上分别取点E,F,设A1E=m,AF=n. 求证:EF=.

已知异面直线a与b所成的角为50°,P为空间一定点,则过点P且与a、b所成的角都是30°的直线有且仅有【 】

如果直线l,m与平面α,β,γ满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么必有【 】

如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是________.

如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为【 】

如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.

如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox//BC,Oy//AB,E为VC中点,正四棱锥底面长为2a,高为h. (Ⅰ)求cos⁡⟨,⟩;(Ⅱ)记面BVC为α,面DVC为β,若∠BED是二面角α-VC-β的平面角,求∠BED.

在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.(Ⅰ)求证:A'F⊥C'E;(Ⅱ)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用三角函数表示).

如图,在正四棱柱ABCD-A1 B1 C1 D1中,AB=2,AA1=4,点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2 C2//A2 D2;(2)点P在棱BB1上,当二面角P-A2 C2-D2为150°时,求B2 P.

在三棱柱 ABC − A1B1C1 中, AB ⊥ AC, B1C ⊥ 平面 ABC, E, F 分别是 AC, B1C 的中点.(1) 求证: EF // 平面 AB1C1;(2) 求证: 平面 AB1C ⊥ 平面 ABB1.

直升飞机上一点 P 在地平面 M 上的正射影是 A .从P看地平面上一物体 B (不同于 A ) ,直线P B 垂直于飞机窗玻璃所在的平面 N(如图).证明:平面 N 必与平面 M 相交,且交线 l 垂直于 AB.

如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.

如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.

如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.

如图,四棱锥S-ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.

如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC,SC于D,E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.

如图,平面α,β相交于直线MN,点A在平面α上,点B在平面β上,点C在直线MN上,∠ACM=∠BCN=45°,A-MN-B是60°的二面角,AC=1. 求:(1) 点A到平面β的距离;(2) 二面角A-BC-M的大小(用反三角函数表示).

如图,已知ABCD是边长为4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.