如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.
如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为【 】
如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.
如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC=60°,E为BC的中点. (1)证明:BC⊥AD;(2)点F满足(EF)→=(DA)→,求二面角D-AB-F的正弦值.
如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.
下列五个正方体图形中,l是正方体的一条对角线,点 M,N,P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是________(写出所有符合要求的图形序号).
已知平面P1:10x+15y+12z-60=0,P2:-2x+5y+4z-20=0.若存在一个四面体,其中两个面分别位于平面P1和P2上,下面哪条直线可能是该四面体的一条棱【 】
过一定点作一直线 AB 平行于一定平面 P,且与另一定平面 Q 所成之角等于定角 θ.
在120°的二面角P-α-Q的两个面P和Q内,分别有点A和B . 已知点A和点B到棱α的距离分别为2和4,且线段AB=10.(1) 求直线AB和棱α所成的角;(2) 求直线AB和平面Q所成的角.
已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图).求证MNPQ是一个矩形.