不定项选择(2021年新高考Ⅰ

在正三棱柱ABC-A1B1C1中,AB=AA1=1,点P满足,其中λ∈[0,1],μ∈[0,1],则【 】

A、当λ=1时,△AB1P的周长为定值

B、当μ=1时,三棱锥P-A1BC的体积为定值

C、当λ=1/2时,有且仅有一个点P,使得A1P⊥BP

D、当μ=1/2时,有且仅有一个点P,使得A1B⊥平面AB1P

答案解析

BD

讨论

如图,A1B1C1-ABC是直三棱柱,过点A1,B,C1的平面和平面ABC的交线记作l.(I)判定直线A1C1和l的位置关系,并加以证明;(Ⅱ)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线l的距离.

如图,已知A1B1C1-ABC是正三棱柱,D是AC的中点.(Ⅰ)证明AB1//平面DBC1;(Ⅱ)假设AB1⊥BC1,求以BC1为棱、DBC1与CBC1为面的二面角α的度数.

如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC,则BD1与AF1所成的角的余弦值是【 】

如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件____________时,有A1C⊥B1D1)(注:填上你认为正确的一-种条件即可,不必考虑所有可能的情形).

如图,已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(Ⅰ)求侧棱A1A与底面ABC所成角的大小;(Ⅱ)求侧面A1ABB1与底面ABC所成二面角的大小;(Ⅲ)求顶点C到侧面A1ABB1的距离.

在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为【 】

已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是【 】

如图, 六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的. 已知螺帽的底面正六边形边长为 2cm, 高 为 2cm, 内孔半径为 0.5cm, 则此六角螺帽毛坯的体积是 __________cm3.

如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.

在体积为V的斜三棱柱ABC-A'B'C'中,已知S是侧棱CC'上的一点,过点S,A,B的截面截得的三棱锥的体积为V1,那么过点S,A',B'的截面截得的三棱锥的体积为______.

设点P在有向线段的延长线上,P分所成的比为λ,则【 】

如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1,A1A的中点. (I)求的长; (II)求cos⟨,⟩的值;(Ⅲ)求证A1B⊥C1M.

如图,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若=a,=b,=c,则下列向量中与相等的向量是【 】

如图,直三棱柱ABC-A1 B1 C1的体积为4,△A1 BC的面积为2√2.(1)求A到平面A1 BC的距离;(2)设D为A1 C的中点,AA1=AB,平面A1 BC⊥平面ABB1 A1,求二面角A-BD-C的正弦值.

设点Q关于平面r➝=-(t+p) i➝+tj➝+(1+p)k➝的对称点为S,其中t,p为实数,i➝,j➝,k➝分别为空间坐标系坐标轴正方向的三个单位向量,若点Q与S的位置矢量分别为10i➝+15j➝+20k➝与αi➝+βj➝+γk➝,则以下说法正确的是【 】

设m为正整数,数列a1,a2,⋯,a4m+2是公差不为0的等差数列,若从中删去两项ai和aj (i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯,a4m+2是(i,j)—可分数列.(1)写出所有的(i,j),1≤i<j≤6,使数列a1,a2,⋯,a6是(i,j)—可分数列;(2)当m≥3时,证明:数列a1,a2,⋯,a4m+2是(2,13)—可分数列;(3)从1,2,⋯,4m+2中一次任取出两个数i和j(i<j),记数列a1,a2,⋯,a4m+2是(i,j)—可分数列的概率为Pm,证明:Pm>1/8.

已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 __________.

在直角坐标系 xOy 中, 曲线 C1 的参数方程为 (t 为参数). 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为 4ρcosθ−16ρsinθ + 3 = 0.(1) 当 k = 1 时, C1 是什么曲线?(2) 当 k = 4 时, 求 C1 与 C2 的公共点的直角坐标.

执行如图的程序框图,则输出的 n =【 】

若 x, y 满足约束条件 则 z = x + 7y 的最大值为 __________.