问答题(2020年新高考Ⅱ·文

如图, 已知三棱柱 ABC − A1B1C1 的底面是正三角形, 侧面 BB1C1C 是矩形, M, N 分别为 BC, B1C1 的中点, P 为 AM 上一点, 过 B1C1 和 P 的平面交 AB 于 E, 交 AC 于 F .

(1) 证明: AA1 // MN, 且平面 A1AMN ⊥ 面 EB1C1F ;

(2) 设 O 为 △A1B1C1 的中心, 若 AO = AB = 6, AO//平面 EB1C1F , 且 ∠MPN = π/3 , 求四棱锥 B −EB1C1F 的体积.

答案解析

(1) 因为 M, N 分别为 BC, B1C1 的中点, 所以 MN // CC1 . 又由已知得 AA1 // CC1, 故 AA1 // MN.因为 △A1B1C1 是正三角形, 所以 B1C1⊥A1N. 又 B1C1⊥MN, 故 B1C1⊥平面A1AMN.所以平面 A1AMN⊥平面EB1C1F.(2) AO // 平面 EB1C1F , AO ⊂ 平面 A1AMN, 平面 A1AMN∩ 平面 EB1C1F = PN, 故 AO // PN.又 AP // ON, 故四边形 APNO 是平行四边形, 所以 PN = AO = 6, AP = ON =...

查看完整答案

讨论

在直棱柱A1B1C1-ABC中,∠BAC=π/2,AB=AC=AA1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的不动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为【 】

已知正方体ABCD-A1B1C1D1,则【 】

如图,已知正三棱柱ABC-A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F-BC-A的平面角为γ,则【 】

下列五个正方体图形中,l是正方体的一条对角线,点 M,N,P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是________(写出所有符合要求的图形序号).

已知平面P1:10x+15y+12z-60=0,P2:-2x+5y+4z-20=0.若存在一个四面体,其中两个面分别位于平面P1和P2上,下面哪条直线可能是该四面体的一条棱【 】

设点Q关于平面r➝=-(t+p) i➝+tj➝+(1+p)k➝的对称点为S,其中t,p为实数,i➝,j➝,k➝分别为空间坐标系坐标轴正方向的三个单位向量,若点Q与S的位置矢量分别为10i➝+15j➝+20k➝与αi➝+βj➝+γk➝,则以下说法正确的是【 】

Find the equation of the projection of the linex=z+2,y=2z-4 upon the plane x+y- z = 0.

Find the equation of the plane passing through the line (x-x1)/a1 =(y-y1)/b1 =(z-z1)/c1 which is parallel to the (x-x2)/a2 =(y-y2)/b2 =(z-z2)/c2 .

Find the equation of the sphere which passes through (1,5,-3),(-3,0,0) which center on the 3x+y+z=0,x+2y +1 = 0.

Find the equation of the ruled surface whose generators are the system of the lines x-2y =4kx,k(x-2y)=4 and discuss the surface.

如图,在棱长为2的正方体ABCD-A1 B1 C1 D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1 F//平面A1 EC1;(2)求直线AC1与平面A1 EC1所成角的正弦值;(3)求二面角A-A1 C1-E的正弦值.

如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点. (1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.

如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.

如图,已知ABCD和CDEF都是直角梯形,AB//DC,DC//EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F-DC-B的平面角为60°.设M,N分别为AE,BC的中点. (1)证明:FN⊥AD;(2)求直线BM与平面ADE所成角的正弦值.

如图,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°.侧棱AA1=2,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(I)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A1到平面AED的距离.

直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,AA1⊥AB,D为A1B1的中点,E为AA1的中点,F为CD的中点.(1)求证:EF//ABC平面;(2)求直线BE与平面CC1D夹角的正弦值;(3)求平面A1CD与平面CC1D夹角的余弦值.

如图,在正四棱柱ABCD-A1 B1 C1 D1中,AB=2,AA1=4,点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2 C2//A2 D2;(2)点P在棱BB1上,当二面角P-A2 C2-D2为150°时,求B2 P.

坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素,安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形,若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD的夹角的正切值均为√14/5,则该五面体的所有棱长之和为【 】

如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=AB=BC=1,PC=√3. (1)求证:BC⊥平面PAB;(2)求二面角A-PC-B的大小.

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=AC=2,BC=1,AB=√3. (Ⅰ)若AD⊥PB,证明:AD//平面PBC;(Ⅱ)若AD⊥DC,且二面角A-CP-D的正弦值为√42/7,求AD.