问答题(1931年上海交通大学

Find the equation of the sphere which passes through (1,5,-3),(-3,0,0) which center on the 3x+y+z=0,x+2y +1 = 0.

答案解析

暂无答案

讨论

如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为【 】

如图所示,为了制作一个圆柱形灯笼,先要制作4 个全等的矩形骨架,总计耗用9.6 米铁丝。 骨架将到柱底面8 等分,再用S 平方米塑輯片制成圆柱的侧面和下底面(不安装上底面).(Ⅰ) 当圆柱底面半径r 为何值时, S 取得最大值? 并求出该最大值(结果精确到0.01 平方米);(Ⅱ) 在灯笼内,以矩形骨架的頂点为端点, 安装一些霓虹灯,当灯笼底面半径为0.3 米时,求图中两根直线型霓虹灯A1B3,A3B5所在异面直线所成角的大小(结果用反三角函数值表示).

Find the equation of the ruled surface whose generators are the system of the lines x-2y =4kx,k(x-2y)=4 and discuss the surface.

Solve the following equation by taking the steps performed in srriving at Cardann formulas, but do not formulas themselves: x³ - 15x² - 33x +847= 0.

A boy standing cft. behind and opposite the middle of a foothall goal sees that the angle of elevation of the nearer is A and the angle of elevation of the farther one is B. Show that the length of the field is c(tanAcotB-1).

Find the equation of the projection of the linex=z+2,y=2z-4 upon the plane x+y- z = 0.

Given the parabola y²=4x and the line x=2+ecosα,y=-4+ecosβ,find the condition which cosα and cosβ must satisfy if the line meets the parabola in but one point.

Find the equation of the plane passing through the line (x-x1)/a1 =(y-y1)/b1 =(z-z1)/c1 which is parallel to the (x-x2)/a2 =(y-y2)/b2 =(z-z2)/c2 .

Chords of the circle p=29cosθ which pass through the pole are extended a distance 2b. Find the locus of their extremities.

Find the sum of the geometical series -2,,-1/3 to 6 terms.

如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.

如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.

如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.

如图,四棱锥S-ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.

如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC,SC于D,E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.

如图,平面α,β相交于直线MN,点A在平面α上,点B在平面β上,点C在直线MN上,∠ACM=∠BCN=45°,A-MN-B是60°的二面角,AC=1. 求:(1) 点A到平面β的距离;(2) 二面角A-BC-M的大小(用反三角函数表示).

如图,已知ABCD是边长为4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

如图,在正三角棱柱ABC-A1 B1 C1中,E∈BB1,截面A1 EC⊥侧面AC1 (Ⅰ)求证: BE=EB1;(Ⅱ)若AA1=A1 B1,求平面A1 EC与平面A1 B1 C1所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(Ⅰ)证明:(如图)在截面A1 EC内,过E作EG⊥A1 C,G是垂足. ①∵_________________________________________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC.②∵_________________________________________.∴BF⊥侧面AC1;得BF//EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________________________________________∴BF//EG四边形BEGF是平行四边形BF=EG.④∵_________________________________________∴FG//AA1,ΔAA1 C∽ΔFGC.⑤∵_________________________________________∴FG=1/2 AA1=1/2 BB1,即BE=1/2 BB1故BE=EB1.(Ⅱ)解:

如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a. (Ⅰ)求截面EAC的面积;(Ⅱ)求异面直线A1 B1与AC之间的距离;(Ⅲ)求三棱锥B1-EAC的体积.

如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°. (Ⅰ)证明:C1C⊥BD.(Ⅱ)假设CD=2,CC1=3/2,记面C1BD为α,面CBD为β,求二面角a-BD-β的平面角的余弦值.(Ⅲ)当CD/CC1 的值为多少时,能使A1C⊥平面C1BD?请给出证明.