计算题(1978年全国统考

已知正方形的边长为 a ,求侧面积等于这个正方形的面积、高等于这个正方形边长的直圆柱体的体积

答案解析

设圆柱体的底面半径为r,依题意得 2πra=a2.

∴ r=a/2π ,

∴ v=πr2a=π(a/2π)2∙a=a3/4π .

讨论

分解因式:x2-4xy+4y2-4z2.

证明:存在正常数c具有卜述性质:对任意整数n>1,以及平面上n个点的集合 S ,若 S中任意两点之间的距离不小于 1 ,则存在一条分离 S 的直线l , 使得 S 中的每个点到直线的距离不小于cn-1/3 . (我们称直线l分离点集 S , 如果某条以S中两点为端点的线段与l相交.)注.如果证明了比cn-1/3 弱的估计cn-α ,会根据α>1/3 的值,适当给分.(中国台湾供题)

有一叠n>1 张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出所有卡片上的数均相等.(爱沙尼亚供题)

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)

The real numbers a,b,c,d are such that a≥b≥c≥d>0 and a+b+c+d=1.Prove that (a+2b+3c+4d)aabbccdd<1.设实数a、b、c、d满足 a≥b≥c≥d>0 ,且 a+b+c+d=1 . 证明:(a+2b+3c+4d)aabbccdd<1.(比利时供题)

Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hod:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.Prove that the following three lines meet in a point : the internal bisectors of angles ∠ADP and ∠PCB and the perpendicular bisector of segment AB.设P是凸四边形ABCD内部一点,且满足:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的中垂线,三线共点。 (波兰供题)

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

在平面直角坐标系 xOy 中, 已知椭圆 E : x2/4+y2/3=1 的左、右焦点分别为 F1、F2, 点 A 在椭圆 E 上且在第一象限内, AF2⊥F1F2, 直线 AF1 与椭圆 E 相交于另一点 B.(1) 求 △AF1F2 的周长;(2) 在 x 轴上任取一点 P , 直线 AP 与椭圆 E 的右准线相交于点 Q, 求 ∙的最小值;(3) 设点 M 在椭圆 E 上, 记 △OAB 与 △MAB 的面积分别为 S1, S2, 若 S2 = 3S1, 求点 M 的坐标.

某地准备在山谷中建一座桥梁, 桥址位置的竖直截面图如图所示: 谷底 O 在水平线 MN 上, 桥 AB 与 MN平行, OO′为铅垂线 (O′在 AB 上), 经测量, 左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米) 与 D 到 OO′ 的距离 a (米) 之间满足关式 h1=1/40 a2 ; 右侧曲线 BO 上任一点 F 到 MN 的距离 h2 (米) 与 F 到 OO′的距离 b (米)之间满足关系式 h2=-1/800 b3+6b . 已知点 B 到 OO′的距离为 40 米.(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于 OO′的桥墩 CD 和 EF , CE 为 80 米, 其中 C, E 在 AB 上 (不包括端点), 桥墩 EF 每米造价 k (万元), 桥墩 CD 每米造价 3/2 k (万元) (k > 0), 问 O′E为多少米时, 桥墩 CD 与 EF 的总造价最低?

设正多面体每个顶点连有M条棱,每面都是正N边形,则正整数M和N满足关系:M>2,N>2,MN<2(M+N),这种正多面体共有【 】种。

有圆锥高8寸,底之半径4寸,今距顶点 2寸之处,作与底平行之平面截断此圆锥,问此两部分之体积各几何?

有长方体积之冰块,其长 2 步,阔 1 步 3 尺,厚4 尺,而此冰之比重为 0.93,若置其于水中,浮出水面之高几寸?

如图,从一个棱长为6米的正方体中裁去两个相同的正三棱锥,若正三棱锥的边长AB为4√2,则剩余何体的表面积为【 】

下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】

在正四棱台ABCD-A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为______.

底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ABC 是底面的内接正三角形, P 为 DO 上一点, ∠APC = 90°.(1) 证明: 平面 PAB ⊥ 平面 PAC;(2) 设 DO = , 圆锥的侧面积为π, 求三棱锥 P − ABC 的体积.

如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】