下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】
A、直径为0.99m的球体
B、所有棱长均为1.4m的四面体
C、底面直径为0.01m,高为1.8m的圆柱体
D、底面直径为1.2m,高为0.01m的圆柱体
已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为【 】
一个四面体的所有棱长都为√2,四个顶点在同一球面上,则此球的表面积为【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】
已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为__________.
若棱长为 2 的正方体的顶点都在同一球面上, 则该球的表面积为【 】
已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是【 】
已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为π/3,则圆台的体积与球的体积之比为__________.
长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是【 】
球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
已知正方形的边长为 a ,求侧面积等于这个正方形的面积、高等于这个正方形边长的直圆柱体的体积
如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【 】
已知圆柱的轴截面是正方形,它的面积是4cm2,那么这个圆柱的体积是__________cm3 (结果中保留π).
已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是【 】
如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.(1)求证:AF⊥DB;2)如果圆柱与三棱锥D-ABE的体积比等于3πr,求直线DE与平面ABCD所成的角.
一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是【 】
已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一第直径,C是下底面圆周上的一个动点,则ABC的面积取值范围为__________.
在四棱锥P-ABCD中,PD⊥底面ABCD,CD//AB,AD=DC=CB=1,AB=2,DP=√3. (1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.
如图所示三棱锥,底面为等边△ABC,O为AC中点,PO⊥平面ABC,AP=AC=2.(1)求三棱锥P-ABC的体积;(2)若M为BC中点,求PM与平面PAC所成角的大小.
P -ABC 为一正三角锥,其底面三角形 ABC 正三角形之每边为 10 尺,而APB、BPC、CPA 三个面角均为 30°,求此三角锥之高.
设一四面体有一三面角与另一四面体的一三面角对称,求证:其体积之比等于此两三面角三棱分别的乘积之比.
设三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=直角.求证:ABC是锐角三角形.
如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E,F分别为SC,AB的中点,那么异面直线EF与SA所成的角等于【 】