长方体的全面积为11,12条棱长度之和为24,则这个长方体的一条对角线长为【 】
A、2
B、
C、5
D、6
如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.
在四棱锥P-ABCD中,PD⊥底面ABCD,CD//AB,AD=DC=CB=1,AB=2,DP=√3. (1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.
已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={ Q∈S|PQ≤5},则T表示的区域的面积为【 】
某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【 】
设正多面体每个顶点连有M条棱,每面都是正N边形,则正整数M和N满足关系:M>2,N>2,MN<2(M+N),这种正多面体共有【 】种。
在正四棱台ABCD-A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为______.
底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.
如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】
设过长方体同一个顶点的三个面的对角线长分别是a,b,c,那么这个长方体的对角线长是【 】
有长方体积之冰块,其长 2 步,阔 1 步 3 尺,厚4 尺,而此冰之比重为 0.93,若置其于水中,浮出水面之高几寸?
一个长方体共一顶点的三个面的面积分别是,, ,这个长方体对角线的长是【 】
建造一个容积为8m3,深为2m的长方体无盖水池。如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元。
已知椭圆的极坐标方程是ρ=5/(3-2cosθ),那么它的短轴长是【 】
以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是【 】
设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?