如图,正方体ABCD-A1B1C1D1中,P,Q,R,S分别为棱AB,BC,BB1,CD的中点,连接A1S,B1D.空间任意两点M,N,若线段MN上不存在点在A1S,B1D上,则称MN两点可视,则下列选项中与点D1可视的点为【 】
A、点P
B、点B
C、点R
D、点Q
如图,正方体ABCD-A1B1C1D1中,P,Q,R,S分别为棱AB,BC,BB1,CD的中点,连接A1S,B1D.空间任意两点M,N,若线段MN上不存在点在A1S,B1D上,则称MN两点可视,则下列选项中与点D1可视的点为【 】
A、点P
B、点B
C、点R
D、点Q
D
【解析】
因为D1P与A1S为平行四边形A1D1SP的两条对角线,所以必相交,故D1P不可视; 而D1B,D1R与DB1同在平行四边形DD1B1B内,且不平行,因此必相交,故D1B,D1R不可视.
已知函数f(x)的定义域为[0,+∞),且满足f(x)=f(1/(1+x)),记函数的值域为Af,若a>0,满足{y│y=f(x),x∈[0,a] }=Af,则实数a的取值范围为__________.
已知λ>0,向量|a|=|b|=|c|=λ,且a∙b=0,c∙b=1,c∙a=2,则λ=________.
已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。
为了检则学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检则,则每一类都被抽到的概率为________.
如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=【 】
一个长方体共一顶点的三个面的面积分别是,, ,这个长方体对角线的长是【 】
如图,E,F分别为正方形的面ADD1A1、面BCC1B1的中心,则四边形在该正方形BFD1E的面上的射影可能是________.(要求:把可能的图的序号都填上)
在一个正方体中,过顶点A的三条棱的中点分别为E,F,G,该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如右图所示,则相应的侧视图是【 】
以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ ( 写出符合要求的一组答案即可).
如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.
如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.
由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.
在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】
在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则【 】
如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】
下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】