直线bx+ay=ab(a<0,b<0)的倾斜角是【 】
A、arctan(-b/a)
B、arctan(-a/b)
C、π - arctan(b/a)
D、π - arctan(a/b)
直线bx+ay=ab(a<0,b<0)的倾斜角是【 】
A、arctan(-b/a)
B、arctan(-a/b)
C、π - arctan(b/a)
D、π - arctan(a/b)
C
当z=-(1-i)/时,z100 + z50 + 1的值等于【 】
函数y = (1 - tan22x)/(1 + tan22x)的最小正周期是【 】
如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】
已知椭圆x2/a2 +y2/b2 =1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明:-(a2 - b2)/a < x0 < (a2 - b2)/a.
设等差数列{an}的前n项和为Sn.已知a3=12,S12>0,S13<0.(Ⅰ)求公差d的取值范围.(Ⅱ)指出S1,S2,…,S12中哪一个值最大,并说明理由.
已知:两条异面直线a,b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a,b上分别取点E,F,设A1E=m,AF=n. 求证:EF=.
已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,求sin2α的值.
已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )的值是________.
设D为△ABC一边BC之中点,证AD²=1/4(2AB²+2AC²-BC²)
有等高的两竿,自其底连线上一点望之,较近之竿的仰角为 60°,若自该点向此线之垂直方向行 80 尺而测之,得二竿之仰角为 45°,30°,试求二竿之高及其间的距离.
设人眼在墙顶上观察一塔,测得塔之全长所夹之角为θ,设墙高为h尺,墙与塔之距离为d尺.试证:(h²+d²)sinθ/(hsinθ+dcosθ)尺为塔这高.
试证三角形∠A之内角平分线之长为2bc∙cos(A/2)/(b+c).
有三角形底边长是 2a,求顶点的轨迹,使其它二边的相乘积为 a².
堤上有塔高 50 尺,自堤下地面某点测得塔顶之仰角为 75°,塔底之仰角为 45°,求堤高.
△ABC 之底边 BC 的位置及长均为已知,自 B 至 AC 边之中线长亦为已知,求 A 点之轨迹.
已知在△ABC中,A+B=3C,2 sin(A-C)=sinB.(1)求sinA;(2)设AB=5,求AB边上的高.
已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.
如果AC < 0,且BC < 0,那么直线Ax + By + C = 0不通过【 】
已知直线l1和l2夹角的平分线为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是【 】
已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.