关注优题吧,注册平台账号.
已知直线的极坐标方程为ρsin(θ+π/4)=/2,则极点到该直线的距离是______.
/2
已知的展开式中x3的系数为9/4,常数a的值为________.
四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】
不等式组的解集是【 】
定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间├ [0,+∞)上的图像与f(x)的图像重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)>g(b)-g(-a).其中成立的是【 】
圆台上、下底面积分别为π,4π侧面积为6π,这个圆台的体积是【 】
椭圆C与椭圆(x-3)2/9+(y-2)2/4=1关于直线x+y=0对称,椭圆C的方程是【 】
函数y=cos2x - 3cosx + 2的最小值为【 】
曲线的参数方程是(t是参数,t≠0),它的普通方程是【 】
长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是【 】
将y=2x的图像【 】,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.
在直角坐标系 xOy 中, 曲线 C 的参数方程为 (t 为参数且 t ≠ 1), C 与坐标轴交于 A, B 两点.(1) 求 |AB|;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.
极坐标方程4sin2θ = 3表示的曲线是【 】
极坐标方程ρcosθ=4/3表示【 】
在直角坐标系xOy中,曲线C的方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立坐标系,已知直线l的极坐标方程为ρsin(θ+π/3)+m=0.(1) 写出l的直角坐标方程;(2) 若l与C有公共点,求m的取值范围.
在直角坐标系xOy中,⨀C的圆心为C(2,1),半径为1.(1)写出⨀C的一个参数方程;(2)过点F(4,1)作⨀C的两条切线,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
曲线的参数方程为(0≤t≤5),则曲线是【 】
椭圆的两个焦点坐标是【 】
设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?
已知椭圆的极坐标方程是ρ=5/(3-2cosθ),那么它的短轴长是【 】
极坐标方程4ρsin2(θ/2)=5表示的曲线是【 】
极坐标方程ρ2cos2θ=1所表示的曲线是【 】
如果圆锥曲线的极坐标方程为ρ=16/(5-3cosθ),那么它的焦点的极坐标为【 】
在极坐标系中,椭圆的两焦点分别在极点和点(2c,0),离心率为e,则它的极坐标方程是【 】
椭圆的极坐标方程为ρ=3/(2-cosθ ),则它在短轴上的两个顶点的极坐标是【 】
在极坐标系内,方程ρ=5cosθ表示什么曲线?画出它的图形.
极坐标方程ρ=asinθ(a>0)的图像是【 】
极坐标方程ρ=4/(3-2cosθ)所表示的曲线是【 】
极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是【 】
极坐标方程ρ = cos(π/4 - θ)所表示的曲线是【 】
已知曲线 C : mx2 + ny2 = 1. 【 】