问答题(2020年全国Ⅲ(文)2020年全国Ⅲ(理)

在直角坐标系 xOy 中, 曲线 C 的参数方程为 (t 为参数且 t ≠ 1), C 与坐标轴交于 A, B 两点.

(1) 求 |AB|;

(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.

答案解析

(1) 因为 t≠1, 由 2 − t − t2 = 0 得 t = −2, 所以 C 与 y 轴的交点为 (0, 12); 由 2 − 3t + t2 = 0 得 t = 2,所以 C 与 x 轴的交点为 (−4, 0). 故 |AB...

查看完整答案

讨论

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 当 AB = BC 时, EF ⊥ AC;(2) 证明: 点 C1 在平面 AEF 内.

某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到公园锻炼的人次, 整理数据得到下表 (单位: 天):(1) 分别估计该市一天的空气质量等级为 1, 2, 3, 4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值 (同一组中的数据用改组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2, 则称这天“空气质量好” ; 若某天的空气质量等级为 3 或 4, 则称这天“空气质量不好” . 根据所给数据, 完成下列的 2 × 2 列联表, 并根据列联表, 判断是否有 95% 的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

设等比数列 {an} 满足 a1 + a2 = 4, a3 − a1 = 8.(1) 求 {an} 的通项公式;(2) 记 Sn 为数列 {log3an} 的前 n 项和. 若 Sm + Sm+1 = Sm+3, 求 m.

设函数 f(x) = ex/(x+a). 若 f′(1) = e/4 , 则 a = ______.

设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.

已知圆锥的底面半径为 1, 母线长为 3, 则该圆锥内半径最大的球的体积为______.

(x2 + 2/x)6 的展开式中常数项是 ______(用数字作答).

若 x, y 满足约束条件, 则 z = 3x + 2y 的最大值是__________.

极坐标方程ρ2cos2θ=1所表示的曲线是【 】

极坐标方程ρ=2sin⁡(θ+π/4)的图形是【 】

已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 __________.

以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是【 】

某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虛轴)旋转所成的曲面,其中A,A'是双曲线的顶点,C,C是冷却塔上口直径的两个端点,B,B'是下底直径的两个端点,已知AA'=14 m, CC'=18 m,BB'=22 m,塔高20 m.(Ⅰ)建立坐标系并写出该双曲线方程;(Ⅱ)求冷却塔的容积(精确到10m3 ,塔壁厚度不计,π取3.14).

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=2cosθ.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足=,写出P的轨迹C1的参数方程,并判断C与C1是否有公共点.

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A,B为端点的曲线段C上的任意一点到l2的距离与点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

试论下列函数并绘其图形ρ = 2(1 - cosθ)

在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A,B两点,则|AB|=________.

设0<θ<π/2,曲线x2sin⁡θ+y2cos⁡θ=1和x2cos⁡θ-y2sin⁡θ=1有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.