关注优题吧,注册平台账号.
极坐标方程ρ2cos2θ=1所表示的曲线是【 】
A、两条相交直线
B、圆
C、椭圆
D、双曲线
D
若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的全面积是【 】
不等式(x-1)/(x-3)>0的解集为【 】
对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0 );②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈回输入端,再输出x2=f(x1 ),并依此规律继续下去,现定义f(x)=(4x-2)/(x+1). (Ⅰ)若输入x0=49/65,则由数列发生器产生数列{xn },请写出数列{xn }的所有项;(Ⅱ)若要数列发生器生产一个无穷的常数数列,试求输入的初始数据x0的值.(Ⅲ)若输入x0时,产生的无穷数列{xn }满足:对任意正整数n,均有xn<xn+1,求x0的取值范围.
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量1/2,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).( I )试规定f(0)的值,并解释其实际意义.(Ⅱ)试根据假定写出函数f(x)应该满足的条件和具有的性质.(Ⅲ)设f(x)=1/(1+x2 ).现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.
对任意一个非零复数z,定义集合Mz={ω|ω=z2n-1,n∈N}.(Ⅰ)设α是方程x+1/x=的一个根,试用列举法表示集合Mα,若在Mα中任取两位数,求其和为零的概率P;(Ⅱ)设复数ω∈Mz,求证Mω⊆Mz.
在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.(Ⅰ)求证:A'F⊥C'E;(Ⅱ)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用三角函数表示).
设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.
已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.
用计算器验算函数y= (x>1)的若干个值,可以猜想下列命题中的真命题只能是【 】
已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】
如图:已知锐角∠AOB=2α内有动点P,PM⊥OA,PN⊥OB,且四边形PMON的面积等于常数c2.今以∠AOB的角平分线OX为极轴,求动点P的轨迹的极坐标方程,并说明它表示 什么曲线.
在极坐标系内,方程ρ=5cosθ表示什么曲线?画出它的图形.
极坐标方程ρ=asinθ(a>0)的图像是【 】
极坐标方程ρ=4/(3-2cosθ)所表示的曲线是【 】
已知椭圆的极坐标方程是ρ=5/(3-2cosθ),那么它的短轴长是【 】
极坐标方程4ρsin2(θ/2)=5表示的曲线是【 】
如果圆锥曲线的极坐标方程为ρ=16/(5-3cosθ),那么它的焦点的极坐标为【 】
在极坐标系中,椭圆的两焦点分别在极点和点(2c,0),离心率为e,则它的极坐标方程是【 】
椭圆的极坐标方程为ρ=3/(2-cosθ ),则它在短轴上的两个顶点的极坐标是【 】
在极坐标中,曲线ρ=4sin(θ - π/3)关于【 】
曲线的极坐标方程ρ=4sinθ化成直角坐标方程为【 】
以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是【 】
极坐标方程ρ=2sin(θ+π/4)的图形是【 】
设0<θ<π/2,曲线x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.
极坐标方程ρ=sinθ+2cosθ所表示的曲线是【 】
极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是【 】
极坐标方程ρ = cos(π/4 - θ)所表示的曲线是【 】
极坐标方程4sin2θ = 3表示的曲线是【 】
已知直线的极坐标方程为ρsin(θ+π/4)=/2,则极点到该直线的距离是______.
在直角坐标系 xOy 中, 曲线 C 的参数方程为 (t 为参数且 t ≠ 1), C 与坐标轴交于 A, B 两点.(1) 求 |AB|;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.